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Abstract

Ventricular arrhythmia frequently complicates myocar-
dial ischemic events, sometimes to devastating ends. Ac-
curate arrhythmia prediction in this setting could improve
outcomes, yet traditional models struggle with the tempo-
ral complexity of the data. This study employs a Long
Short-Term Memory (LSTM) network to predict the time
to the next premature ventricular contraction (PVC) us-
ing high-resolution experimental data. We analyzed elec-
trograms from 11 large animal experiments, identifying
1832 PVCs, and computed time-to-PVC. An LSTM model
(247 inputs, 1024 hidden units) was trained on 10 experi-
ments, with one held out for testing, achieving a validation
MAE of 8.6 seconds and a test MAE of 135 seconds (loss
68.5). Scatter plots showed strong validation correlation
and a positive test trend, suggesting the potential of this
approach.

1. Introduction

Myocardial ischemia, a condition characterized by re-
duced blood flow to the heart muscle, often leads to severe
and dangerous electrophysiological abnormalities. Prema-
ture ventricular contractions (PVCs) are ectopic heartbeats
originating from the ventricles that can serve as precursors
to more severe arrhythmias, including ventricular tachy-
cardia or fibrillation [1, 2]. The unpredictable nature of
ischemia-induced ventricular arrhythmias poses a signifi-
cant challenge for timely clinical intervention, yet accurate
prediction of their occurrence could enable proactive man-
agement strategies, possibly reducing the risk of adverse

cardiac events.

Traditional statistical approaches, such as linear regres-
sion or time-series analysis, often fail to capture the com-
plex temporal dynamics inherent in electrophysiological
data, particularly when dealing with high-dimensional sig-
nals like those recorded from multiple channels during ex-
perimental studies. These limitations have driven the ex-
ploration of advanced machine learning techniques, par-
ticularly deep learning models, which are better equipped
to handle sequential and non-linear patterns. Long Short-
Term Memory (LSTM) networks, a type of recurrent neu-
ral network, are particularly well-suited for this task due
to their ability to model long-term dependencies in time-
series data [3].

Prior research in arrhythmia prediction has often fo-
cused on classification tasks, such as detecting the pres-
ence of arrhythmia risk in ECG signals, using methods
such as convolutional neural networks (CNNs) [4]. How-
ever, predicting the precise timing of the next arrhythmic
event remains underexplored, despite the inherent benefit
to inform clinical decision-making. This study addresses
the gap in arrhythmia prediction by developing a machine
learning pipeline to predict the time to the next PVC us-
ing LSTM-based time series analysis. We leverage high-
resolution electrograms from in situ large animal experi-
ments, specifically targeting ischemia-induced PVCs. Our
dataset spans 11 experiments, from which we identified
1832 PVCs. Our objective is to create a robust, real-time
predictive tool that can enhance clinical prediction capabil-
ities, ultimately improving patient outcomes in the context
of myocardial ischemia.



2. Methods

Data Acquisition and Preprocessing

The dataset comprises electrophysiological recordings
from 11 large animal experiments, designed to study
ischemia-induced arrhythmias, described previously [5].
Briefly, in each experiment, recordings were made simul-
taneously at 1 kHz from the epicardial surface, within the
myocardium via plunge needle arrays, and the torso sur-
face. For the purposes of this study, the epicardial record-
ings were used. Recordings were segmented into 15-
second runs, capturing the electrophysiological changes
during interventions of induced myocardial ischemia. In-
tervention periods—characterized by coronary artery occlu-
sion and either electrical or pharmacological stimulation to
replicate ischemic supply-demand mismatches—were iden-
tified, along with episodes containing PVCs. Across all
experiments, a total of 1832 PVCs were detected, reflect-
ing a diverse set of arrhythmic events.

For each heartbeat in a non-PVC run, we computed the
time to the next PVC within the same intervention period,
providing a continuous target variable for prediction. This
time-to-PVC metric was calculated by identifying the tem-
poral difference between the start of a given beat and the
next run containing a PVC, ensuring alignment with the
experimental protocol.

Model Training

An LSTM model was developed to predict the time
to the next PVC, leveraging the sequential nature of the
electrophysiological data. The model architecture in-
cluded 247 input channels, corresponding to the number
of recordings from the epicardial surface, and 1024 hid-
den units in a single layer. A softplus activation function
was used at the output to ensure non-negative predictions,
as time-to-PVC values are inherently positive. The model
was trained on data from 10 experiments, with one experi-
ment held out for testing to evaluate generalizability.

The training spanned 75 epochs, using an AdamW op-
timizer with a learning rate of 0.001 and a weight decay
of le-5 to regularize the model [6]. A hybrid loss function
was employed, combining mean squared logarithmic error
(MSLE) and mean absolute error (MAE) with a weight-
ing factor of 0.5, to balance sensitivity to both small and
large prediction errors. This hybrid approach was chosen
to address the wide range of time-to-PVC values observed
in the dataset, which spanned from a few seconds to over
1000 seconds. A learning rate scheduler adjusted the learn-
ing rate dynamically based on validation performance to
ensure convergence. Hyperparameters, including the hid-
den unit size, number of hidden layers, learning rate, loss
function alpha, and batch size, were optimized through a
systematic sweep to maximize validation performance.

Model Testing

The trained model was evaluated on the held-out exper-
iment to assess its performance on unseen data, simulating
a real-world scenario where the model must generalize to
new experimental conditions. The best model checkpoint,
selected based on the lowest validation loss achieved dur-
ing training, was used for testing. Predictions were gener-
ated for the time-to-PVC values in the test set, and perfor-
mance was measured using both MAE and the hybrid loss
function used during training.

3. Results

The full dataset included 32,009 samples, representing
non-PVC runs across the 11 experiments. The 10 exper-
iments used in training were split into a training dataset
of 24,773 samples and a validation dataset of 4,372 sam-
ples, reflecting an 85:15 ratio. Training achieved a valida-
tion mean absolute error (MAE) of 8.6 seconds at epoch
75, demonstrating strong predictive capability on the vali-
dation set. The validation scatter plot (Fig 2, top) shows
a tight correlation between predicted and true time-to-
PVC values, with most predictions aligning closely with
the identity line (R?=0.9759), indicating robust learning
across the experiments. The distribution of errors reveals
that 80.10% of validation predictions had an absolute error
of less than 10 seconds, and 90.85% were within 20 sec-
onds, highlighting the model’s precision for shorter pre-
diction horizons. However, for time-to-PVC values above
800 seconds, the model showed slightly increased disper-
sion, with an MAE of 49.5 seconds and a median absolute
error of 22.2 seconds in this range.

Testing was performed on the held-out experiment,
which was not included in the training or validation sets.
The test set included 2,864 samples, representing approx-
imately 9% of the full dataset. The test results yielded an
MAE of 135 seconds and a loss of 68.5. The test scatter
plot (Fig 2, bottom) exhibits a positive trend, with many
points following the expected diagonal (R%2=0.4880), par-
ticularly for time-to-PVC values below 200 seconds. The
MAE was 61.5 seconds, and the median absolute error was
53.8 seconds. However, greater dispersion is observed for
larger time-to-PVC values, with errors increasing for val-
ues above 400 seconds, where the MAE rose to 306.8 and
the median absolute error to 308.1 seconds. Overall, the
model correctly predicted the time-to-PVC within a 10-
second window for 5.52% of the test samples, within a
50-second window for 25.52% of the samples, and within
a 100-second window for 45.39% of the samples. These
metrics highlight the model’s performance on unseen data
and its ability to generalize, albeit with increased error
compared to validation.
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modeling both short-term and long-term patterns in high-
dimensional electrophysiological signals [7, 8]. Compared
to prior work that achieved high accuracy in real-time ar-
rhythmia detection using hybrid convolutional neural net-
works [9], our study advances the field by focusing on the
timing of PVCs, a challenging task that provides action-
able insights for clinical intervention. The validation per-
formance, with an MAE of 8.6 seconds, is promising, as a
10-second prediction window could guide real-time inter-
ventions in myocardial ischemia, such as adjusting pacing
strategies, administering anti-arrhythmic drugs, or prepar-
ing for potential escalation to more severe arrhythmias like
ventricular tachycardia.

The test results, with an MAE of 135 seconds and a
loss of 68.5 on the held-out experiment, indicate a positive
trend (Fig 2, bottom), as many predictions align with true
values, particularly for shorter intervals. The model’s abil-
ity to predict within a 100-second window for 45.39% of
the test samples is encouraging, showing that it retains pre-
dictive capability on unseen data. This trend is particularly
evident for time-to-PVC values below 200 seconds, where
the model achieves an MAE of 61.5 seconds and a median
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Figure 2: Scatter plots of predicted versus true time-to-
PVC for validation (top) and for testing (bottom). Valida-
tion MAE: 8.6 s; Test MAE: 135 s, Loss: 68.5.

4. Discussion and Conclusions

The LSTM model’s validation MAE of 8.6 seconds at
epoch 75, based on a validation set of 4372 samples, under-
scores its ability to accurately predict time-to-PVC across
experiments (Fig 2, top). The tight clustering along the
identity line suggests the model effectively captures tem-
poral dependencies in electrophysiological data. This per-
formance is particularly notable given the complexity of
the task, as predicting the precise timing of PVCs requires

absolute error of 53.8 seconds, suggesting that it can pro-
vide reliable predictions for near-term events. However,
the elevated test MAE highlights limitations, particularly
for longer time-to-PVC values, where errors are higher,
with a MAE of 306.8 seconds and a median absolute error
of 308.1 seconds for values above 400 seconds. This dis-
crepancy may stem from inter-experiment variability, such
as differences in ischemic severity, electrode placement, or
animal-specific physiological responses, which were not
fully captured in the training data. Additionally, the under-
representation of longer time-to-PVC events in the training
data, as the majority of samples had time-to-PVC values
below 400 seconds, likely contributes to the increased er-
ror for these cases. The model may also be overfitting to
patterns specific to the training experiments, despite the
use of weight decay for regularization.

The hybrid loss function, combining MSLE and MAE
with a weighting factor of 0.5, balanced sensitivity to small
and large errors, supporting the model’s ability to learn



across a wide range of time intervals. The MSLE com-
ponent ensured that the model prioritized relative accu-
racy for smaller time-to-PVC values, which are more clin-
ically actionable, while the MAE component provided ro-
bustness for larger values, ensuring that the model did not
overly penalize small relative errors in larger predictions.
However, the high test loss suggests that further refinement
is needed to improve generalizability. The network dia-
gram (Fig 1) illustrates the model’s architecture, highlight-
ing its ability to process sequential inputs from the elec-
trode array and produce continuous predictions through a
linear regression layer. This design choice, while effective
for capturing temporal dependencies, may benefit from ad-
ditional mechanisms, such as attention layers, to better
focus on critical time steps in the sequence, particularly
for longer prediction horizons where the model currently
struggles.

The clinical implications of this work are relevant, par-
ticularly in the context of myocardial ischemia, where
timely intervention can prevent progression to life-
threatening arrhythmias. PVCs can act as a harbinger of
more severe arrhythmic events in ischemic conditions, em-
phasizing the need for predictive tools to enable proac-
tive management [2]. These may include more aggres-
sive interventions for ischemia or more aggressive anti-
arrhythmic medical therapy. Even the test performance
could provide a useful early warning system, allowing clin-
icians to monitor high-risk patients more closely and inter-
vene prior to life-threatening arrhythmias.

Future improvements will focus on reducing test error
by expanding the dataset beyond the current 29,145 sam-
ples, potentially by including more experiments with a
broader range of time-to-PVC values to better represent
longer prediction horizons. Incorporating additional fea-
tures, such as beat morphology, could enhance the model’s
ability to capture complex patterns and improve prediction
accuracy for longer intervals. For instance, beat morphol-
ogy could provide insights into the electrophysiological
changes preceding a PVC, and subsequently more signifi-
cant downstream arrhythmia. Fine-tuning the model with
more diverse test data could further enhance its generaliz-
ability across different experimental and clinical settings.

This pipeline demonstrates the potential of LSTM-based
modeling for arrhythmia prediction in the setting of my-
ocardial ischemia, offering a foundation for advanced ar-
rhythmia management. By providing a predictive win-
dow, this approach could enable clinicians to intervene
proactively, potentially reducing the risk of sustained, life-
threatening arrhythmias. Continued refinement of the
model and dataset will be critical to translating this tech-
nology into clinical practice.
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