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Abstract

The electrocardiogram (ECG) is the most common non-
invasive tool to measure the electrical activity of the heart
and assess cardiac health. Despite their ubiquity and util-
ity, traditional ECG analysis methods are limited in many
impactful diseases. Machine learning tools can be em-
ployed to automate task-specific detection of diseases, and
to detect patterns that are ignored by traditional ECG
analysis. Contemporary machine learning tools are lim-
ited by requirements for large labeled datasets, which can
be scarce for rare diseases. Self-supervised learning (SSL)
can address this data scarcity. We implemented the mo-
mentum contrast(MoCo) framework, a form of SSL, using
a large clinical ECG dataset. We then assessed the learn-
ing using Low Left Ventricular Ejection Fraction (LVEF)
Detection as the downstream task. We compared the SSL
improvement of LVEF classification across different input
augmentations. We observed that optimal augmentation
hyperparameters varied substantially based on the train-
ing dataset size, indicating that augmentation strategies
may need to be tuned based on problem and dataset size.

1. Introduction

The electrocardiogram (ECG) is a foundational tool in
diagnosing cardiovascular conditions[1]. With the growth
in the volume of ECG data, machine learning techniques
present a promising way to boost ECG diagnostic accu-
racy in various diseases. Innovative applications of ma-
chine learning to ECG analysis could extend the utility of
ECG beyond its conventional scope, uncovering cardiac
irregularities and conditions previously unavailable to tra-
ditional analysis.

Machine learning (ML) tools are a powerful solution

to automate disease-specific detection tasks with greater
precision and efficiency. However, conventional machine
learning techniques rely on extensive labeled datasets, lim-
iting their application. The reliability of ML tools depends
heavily on the quality and size of the dataset. This is not
a problem for common diseases as the data is more readily
available. However, the scarcity of labeled data presents a
considerable obstacle for rare diseases.

Self-supervised learning (SSL) is a technique that shows
promise in alleviating the need for such large labeled
datasets. SSL is a process in which the model learns valu-
able representations/features by comparing data samples
without any labels. The learned features/representations of
this network are general and can be transferred to a wide
range of downstream tasks with substantially less labeled
data compared to traditional machine learning methods.

Augmentations play a crucial role in many SSL tech-
niques.[2][3] The goal of these augmentations is to alter
the data in a way that enhances the model’s ability to rec-
ognize and distinguish subtle nuances within signals. We
explore various augmentations with a wide range of hyper-
parameters that the model might encounter in real-world
scenarios and measure the performance to learn the scope
of these augmentations in ECG representation learning.

Following the augmentation and pretraining phase, the
learning was evaluated by focusing on Low LVEF De-
tection as the downstream task. In this evaluation phase,
the performance of the network utilizing the pre-trained
weights was evaluated by measuring the Area under the
Receiver Operator Characteristic (ROC) Curve (AUC).

2. Methods

Dataset: Digital ECG recordings were collected from
24,868 University of Utah Health patients from 2012 to
2021. Each ECG measured has 8 leads(LL1, L2, V1 through
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Figure 1. Encoder learns valuable representations dur-
ing the pretraining stage, and then the weights from the
encoder are used to initialize the network to finetune for
downstream tasks in the classification stage

V6) and consists of 10 seconds of continuous simultaneous
recording from each lead at 500 Hz. Also, each ECG is as-
sociated with an ejection fraction measurement within 4
weeks of the ECG recording. For the purpose of training
and validating our model, the 24,868 patients were split
as 90%(22,381 patients) for pretraining and 1%(223 pa-
tients), 5%(1119 patients), 10%(2239 patients) of the 90%
is randomly selected for fine-tuning for the downstream
task of LVEF Classification. 10%(2,487) of the total pa-
tients is reserved as a testing set.

Pretraining: For pretraining, MoCo [4] is the con-
trastive learning framework used for learning ECG repre-
sentations. MoCo has shown promising results in learning
image representations, which has performed well on down-
stream tasks such as classification, segmentation, and de-
tection. The contrastive learning in MoCo is framed as a
dictionary-lookup task. The dictionary is a dynamic queue
of fixed size, and a moving-averaged encoder is used to
update the dictionary. The moving-average encoder is up-
dated based on the momentum of the main encoder, which
is updated by the backpropagation of gradients. The en-
coder and the momentum encoder are then challenged to
produce representations with low contrastive loss for posi-
tive keys and high contrastive loss for all the negative keys
in the dictionary. A query and the key are considered pos-
itive if they are augmentations of the same image and neg-
ative if not.

Augmentations: Our challenge then comes in choosing
augmentations. The kind of augmentation and its strength
play a crucial role in challenging the encoder to look at
contrastive views of the data. Various questions can be
raised when choosing augmentations. If the augmentation
poses a good enough challenge for the encoder to learn rep-
resentations that cluster similar signals in latent space and
the augmentation’s strength, whether it is weak or strong,
for the encoder to learn features or to deviate completely
from the task at hand.

Few augmentations have been selected for our task
where data augmentation has been explored for time series

classification in general[2], and the augmentations have
been tested specifically for ECG representation learning
using contrastive framework[3]. The augmentations that
have been chosen to test are:

Gaussian Noise: One of the simple transformations is
adding noise to time series data. A random noise of shape
of the input signal is picked from A (u, o), where  is the
mean and the standard deviation o are the hyperparameters
being tested.

Gaussian Blur: Gaussian blur is achieved by convolv-
ing the image with a Gaussian filter, which is characterized
by its standard deviation, o.

Scaling: Scaling is a multiplication of scaling factor
determined by the NV (i, o), to the ECG signal lead by
lead. Here p is fixed to 1, and the standard deviation o is
the hyperparameter tested.

Magnitude Warping: The scaling factor is multiplied
by the signal so as to warp the signal’s magnitude by a
smooth curve. The scaling factor is generated by interpo-
lating a cubic spline with knots, where the knots are taken
from a Gaussian distribution N (u, o€) where p is fixed to
be 1, and the number of Knots, standard deviation o are
the hyperparameters being experimented.

Baseline Warping: The noise to the signal warps the
signal’s magnitude in a smooth curve. The noise then is
the interpolation of a cubic spline with knots, where the
knots are taken from a A (u, 0€) where p is fixed to be
1 and the number of Knots, standard deviation o are the
hyperparameters.

Time Warping: The warping here happens in the tem-
poral dimension. The augmented time series is of the form:

€Tr; = xT(l),

S Lr(t)y oo Lr(T)s

where 7(.) is a warping function that warps the time steps
based on a smooth curve. The smooth curve is defined by
a cubic spline with knots. The height of the knots is taken
from N (u, 0€). Here 11 and o are fixed to 1 and 0.2, and
the number of knots is the hyperparameter [2].

Window Warping: Window warping takes a random
window of the time series of window ratio and randomly
either stretches it by a factor of 2 or contracts it by % Here,
the window ratio is experimented with.

Encoder: Encoder plays an important role in self-
supervised learning by transforming the input data into a
lower dimensional feature space. The Spatiotemporal en-
coder used here is the one used for comparing the per-
formance of LVEF detection using Individual ECG leads
[5]. The Spatiotemporal encoder consists of an input stage,
temporal and spatial residual blocks, and an output stage.
The spatial residual block uses 7 x 1 convolution filters, and
the temporal uses 1 x 3 filters. The features from the two
residual blocks are concatenated before the output stage.



Instead of using a fully connected layer in the output stage
as used in the model[5], a projection head that projects the
output to 128 dimensions or a prediction head that outputs
a 1 x 1 final output is used, if the task is pretraining or
classification, respectively.

Training Details: As mentioned above, 90% (24,868
patients) of all the patients are used for pretraining. For
these 24,868 patients, the data contain multiple ECGs for
a few patients, resulting in a total of 36,519 ECG signals.
For each pretraining task, Loss, Top1l-accuracy, and Top-5
accuracy are measured to check the progress of the learn-
ing, and for every epoch, the encoder with the best Top1-
accuracy is saved. The weights of the model with the best
Topl accuracy are then used as the initialization for the
downstream classification task.

Classification: To test the pre-trained model’s abil-
ity, a binary classification problem of low LVEF detection
has been chosen as the downstream task where below 40%
LVEEF is seen as low [5].

There are two classification stages, finetuning and base-
line. For the finetuning stage, the network is initialized
with pre-trained weights from self-supervised task and in
the baseline stage, the network is initialized randomly.
Now, 1% (223 patients), 5% (1119 patients), and 10%
(2239 patients) of the training data used for pretraining are
used to train the model. The supervised, finetuned model
is validated against a test set of 10% (2,487 patients). In
the case of classification the ECG that is the one closest in
time to the ejection fraction (EF) measurement was used.
For all the classification tasks, the “area under the ROC
curve” (AUC) is measured, which measures the crucial as-
pect of the model’s ability to discriminate between the pos-
itive and negative classes.

3. Results

The collection of graphs presented in figure 2 presents
the performance of various data augmentation techniques
on the downstream task of detecting low LVEF from ECG
data, with performance measured by the metric AUC. For
each augmentation technique, the graphs show the rela-
tionship between augmentation intensities and the result-
ing model performance.

Gaussian noise improves the model’s robustness to a
point, with medium levels of noise (around 5 mean) per-
forming best, especially for larger datasets. However, per-
formance drops when the noise is too high (around 10
mean). Adding Gaussian blur to the data shows a trend
where a moderate amount of blur (standard deviation of
around 5) improves the model performance, particularly
for large datasets. There is a contrasting trend in the large
dataset compared to the small dataset, where the trends are
reversed as the noise increases. Scaling augmentation pos-
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Figure 2. Performance of various augmentations for the
downstream task of low LVEF detection. The metric mea-
sured here is AUC Score on the validation split

itively impacts the AUC score across all dataset sizes when
the standard deviation is low. There is a threshold after
which increasing the scaling standard deviation results in
a decrease in performance, particularly noticeable in the
smaller dataset.

The graph indicates that a moderate amount of stan-
dard deviation and knots in magnitude warping benefits
the model’s performance, with detrimental effects as these
increase. Larger datasets show the least sensitivity to
changes in parameters. Altering the window ratio has a
notable impact on performance, with a clear peak at a win-
dow ratio of around 0.5 for all the dataset sizes. Baseline
warping shows a consistent trend for larger datasets where
the performance peaks at a moderate level of standard de-
viation of around 20 before declining, whereas the smaller
dataset shows an increase in performance at standard devi-
ation 10 before declining. Increasing the number of knots
in time warping does not have an impact on AUC scores.

Even though all augmentation techniques do not demon-
strate that there is a perfect range in parameter selection



Augmentation Size | Max Min | Baseline
Scaling 223 | 0.8428 | 0.8243 | 0.8329
1119 | 0.8758 | 0.8699 | 0.8739
2238 | 0.8901 | 0.8816 | 0.8846
GaussianNoise 223 | 0.8484 | 0.8327 | 0.8329
1119 | 0.8834 | 0.8726 | 0.8739
2238 | 0.8963 | 0.8854 | 0.8846
GaussianBlur 223 | 0.8388 | 0.8238 | 0.8329
1119 | 0.8915 | 0.8774 | 0.8739
2238 | 0.8988 | 0.8880 | 0.8846
MagnitudeWarping | 223 | 0.8456 | 0.8168 | 0.8329
1119 | 0.8821 | 0.8734 | 0.8739
2238 | 0.8901 | 0.8801 | 0.8846
BaselineWarping 223 | 0.8478 | 0.8301 | 0.8329
1119 | 0.8886 | 0.8681 | 0.8739
2238 | 0.8968 | 0.8836 | 0.8846
WindowWarping 223 | 0.8411 | 0.8283 | 0.8329
1119 | 0.8825 | 0.8743 | 0.8739
2238 | 0.8938 | 0.8852 | 0.8846
TimeWarping 223 | 0.8473 | 0.8361 | 0.8329
1119 | 0.8849 | 0.8794 | 0.8739
2238 | 0.8918 | 0.8880 | 0.8846

Table 1. Comparison of Test AUC Scores Across Different
Augmentations and Dataset Sizes with Baseline

that maximizes performance across all dataset sizes, there
is an optimal point depending on the size of the dataset.
The largest datasets tend to show less sensitivity to aug-
mentation parameters. As presented in Table 1, the results
obtained from the implementation of various data augmen-
tation techniques in our study, contrary to literary expecta-
tions, did not markedly enhance the model’s ability to dis-
cern patterns related to low LVEF compared to baseline.

4. Discussion and Conclusions

In this study, we explored self-supervised learning in the
context of electrocardiogram (ECG) signal analysis, lever-
aging the momentum contrast (MoCo) framework. By
treating each ECG as an instance, we utilized MoCo’s in-
stance discrimination task to learn representations by con-
trasting positive pairs against a queue of negative samples.

The core of our research deals with a comprehensive
survey of augmentation techniques. We identified and
evaluated several augmentations, hypothesizing that cer-
tain transformations would yield more informative rep-
resentations by challenging the model to differentiate
between clinically relevant signal variations and noise.
Through this process, we aimed to discover augmenta-
tion strategies that would significantly improve the model’s
ability to learn generalizable features from ECG signals
that can be transferred to various downstream tasks.

By finetuning our pretrained model on a downstream
task of detecting low LVEF, we were able to draw con-

clusions about the utility of the learned representations.
Our results demonstrated the nuanced impact of different
augmentation techniques on the model’s performance. We
observed that the dataset size played a pivotal role in deter-
mining the effectiveness of each augmentation, with larger
datasets showing less sensitivity to augmentations.

Our study has limitations that we would like to explore
in future work. An increase in dataset size could lead to
learning of a wider array of representations, as seen in
MoCo applications with large-scale datasets such as Im-
ageNet and Instagram-1B[4]. The augmentations used in
our study were not designed with ECG physiology in mind.
A combination of augmentaions was also not explored that
could lead to complimentary or deterimental effects. We
would like to examine whether these augmentations are
equally beneficial when applied to different encoder archi-
tectures, which could further validate the robustness of the
augmentations for ECG representation learning. We would
also like to explore other contrastive learning frameworks.
While MoCo provided a solid foundation for our study, but
various other frameworks warrant investigation.

Acknowledgments

Support for this research came from the Center for Integrative
Biomedical Computing (www.sci.utah.edu/cibc), NIH/NIGMS grants
P41 GM103545 and R24 GM136986, NIH/NIBIB grant U24EB029012,
and the Nora Eccles Harrison Foundation for Cardiovascular Research.

References

[1] Bergquist JA, Rupp L, Zenger B, Brundage J, Busatto A,
MacLeod R. Body surface potential mapping: Contemporary
applications and future perspectives. Hearts 2021;2:514—
542.

[2] Iwana BK, Uchida S. An empirical survey of data augmenta-
tion for time series classification with neural networks. Plos
One 2021;16(7):e0254841.

[3] Soltanieh S, Etemad A, Hashemi J. Analysis of augmenta-
tions for contrastive ecg representation learning. In 2022 In-
ternational Joint Conference on Neural Networks (IJICNN).
2022; 1-10.

[4] He K, Fan H, Wu Y, Xie S, Girshick R. Momentum con-
trast for unsupervised visual representation learning. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2020; 9726-9735.

[5] Bergquist JA, Zenger B, Brundage J, MacLeod RS, Shah R,
Ye X, Lyones A, Ranjan R, Tasdizen T, Bunch TJ, et al. Com-
parison of machine learning detection of low left ventricular
ejection fraction using individual ecg leads. In 2023 Com-
puting in Cardiology (CinC), volume 50. IEEE, 2023; 1-4.

Address for correspondence:

Deekshith Dade

University of Utah

72 Central Campus Dr, Salt Lake City, UT 84112
deekshith.dade @utah.edu



