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Abstract

Acute myocardial ischemia (AMI) is one of the leading
causes of cardiovascular deaths around the globe. Yet,
clinical early detection and patient risk stratification of
AMI remain an unmet need, in part due to poor perfor-
mance of traditional electrocardiogram (ECG) interpre-
tation. Machine learning (ML) techniques have shown
promise in analysis of ECGs, even detecting cardiac dis-
eases not identifiable via traditional analysis. However,
there has been limited usage of ML tools in the case of
AMI due to a lack of high-quality training data, especially
detailed ECG recordings throughout the evolution of is-
chemic events. In this study, we applied ML to predict the
ischemic tissue volume directly from body surface ECGs
in an AMI animal model. The developed ML networks
performed favorably, with an average R2 value of 0.932
suggesting a robust prediction. The study also provides in-
sights on how to create and utilize ML tools to enhance
clinical risk stratification of patients experiencing AMI.

1. Introduction

Acute myocardial ischemia (AMI) is one of the leading
causes of sudden cardiac death worldwide.[1, 2] AMI re-
sults from an abrupt imbalance between cardiac metabolic
demand and cardiac perfusion, leading to severe malfunc-
tions of the heart.[3–5] There remains a critical yet un-
met need for consistent, early, clinical detection and risk
stratification of patients who might experience severe mor-
bidity or even mortality due to AMI.[5] The task is fairly
challenging, especially when patients show atypical symp-
toms of complete coronary obstruction, thereby calling for
a more useful and clinically adaptable tool to facilitate bet-

ter diagnoses and prognoses.
The electrocardiogram (ECG) is a noninvasive tool com-

monly used to diagnose and monitor AMI.[6] Even so,
the use of ECG-based tools in risk stratification is lim-
ited, since clinical ECG diagnosis does not provide pre-
cise information about the size of ischemic regions in the
heart.[7,8] On the other hand, machine learning (ML) tech-
niques have been proven to be a useful and effective sup-
portive tool to identify cardiac disorders otherwise unde-
tectable in traditional ECG interpretation techniques.[9–
11]

Contemporary application of ML in predicting cardio-
vascular diseases is limited, primarily due to the lack
of high-resolution, controlled, and well-labeled training
datasets.[12] Specifically, the limited sample size can in-
troduce biases in the trained networks, making them more
difficult to implement in broader clinical scenarios.[12]
Large animal model data, however, may provide a viable
avenue to develop such ML analytic tools, due to the de-
tail, volume, and control in the data available from such
models.[8]

In this study, we leverage a unique dataset of large
animal experimental recordings of myocardial ischemic
events to create robust ML tools for myocardial ischemia
evaluation. We develop ML networks that can predict the
size of the ischemic regions directly from the body surface
ECG recordings. This study aims to demonstrate a step to-
ward the improvement of ML-ECG tools for clinical risk
stratification of AMI patients by leveraging animal data.

2. Methods

Dataset: Our dataset consisted of continuous recordings
of controlled graded myocardial ischemia in a porcine



large animal model described in Zenger et al.[8, 13, 14]
The dataset consisted of 8 replicates in which recordings
were taken on the body surface and heart surface, as well
as within intracardiac space during controlled episodes of
ischemic stress. During ischemic interventions, the blood
flow through the left anterior descending (LAD) coronary
artery was controlled by a surgically implanted hydraulic
occluder. Reversible transient ischemic stress was induced
by a combination of LAD occlusion (up to 90%), and ei-
ther atrial pacing or pharmacological stimulation via dobu-
tamine. The recordings were made continuously and si-
multaneously across all electrodes at 1,000 Hz. Each ex-
periment consisted of 3 to 9 individual ischemic interven-
tions, as well as the corresponding baseline and recovery
control recordings before and after each intervention. The
signal recording and processing were completed by a suite
of custom processing tools, hardware, and software.[8,15]

The individual heartbeats from each experiment were
isolated using PFEIFER, and resampled to 1,000 time
steps[15]. Ischemic tissue volume was calculated using
the transmural plunge needle recordings as described pre-
viously.[13] Briefly, needle geometry was acquired using
postexperiment magnetic resonance imaging (MRI) pro-
cesses. Then, for each heartbeat, the ST segment potentials
were interpolated into this volume. The volume of tissues
that had an ST segment deviation above 3 mV was con-
sidered ischemic, especially the value of ST40%, the mea-
sured voltage at 40% of the ST segment.[8] The ischemic
volume is the gold standard that the ML-ECG models tar-
get to achieve (Figure 1).

In total, 79,714 data pairs of body surface potential
(BSP) signal and ischemic volume were extracted across
the 8 experiments. The data pairs were then randomly dis-
tributed into a 90%-10% training-validation split, where
the training dataset had 71,743 data pairs and the validation
dataset had 7,971 data pairs. The same training-validation
split pattern was applied to all subsequent analyses.
Machine Learning Architecture and Training for ECG:
The ischemic volumes were predicted using a regression
training with a custom convolutional neural network simi-
lar to that described by Bergquist et al.[16,17] The network
architecture was modified to have one spatial and one tem-
poral resolution, with a 7x1 filter and an 1x5 filter, respec-
tively. Additionally, a softplus was added to the output to
ensure the target values stay positive.[16,17] The networks
were trained with the mean squared error loss between the
network predictions and the target ischemic volumes us-
ing the body surface ECGs as inputs, and the Adam op-
timizer was used to fine-tune the weights. Each network
was trained for 50 iterations, where the training and vali-
dation R2 values were monitored to evaluate network per-
formance. Five replicates of training and validation steps
were completed to minimize the effects of initialization.

Figure 1. Sample Visualization of the input and output of the ML
tools. The ML network predicts the ischemic tissue volumes (top) from
the torso surface ECG recordings (bottom, ST40% values interpolated).
The intracardiac needle electrodes recording the electrograms were visu-
alized within the heart geometry (gray spheres). Based on the error of
the specific prediction, the best (left) and worst (right) performing cases
were found and the input-output pairs were visualized, respectively. The
ST40% values of the best and worst performing heartbeat were used to
visualize across the torso geometry. The best-performing model, network
#3, was used here for demonstration purposes.

All machine learning was implemented using the Pytorch
library.[18]
Analysis metrics: R2 value (coefficient of determination)
was used to evaluate network performance for both the
training and testing sets[19]. In addition, the root mean
square error (RMSE) was calculated for each of the 5 net-
works according to the following equation:

RMSE =

√∑N
n=1(r̂n − rn)2

N
, (1)

where N is the sample size, r̂n is each individual estimated
value and rn is the associated observed value.[20]

The validation dataset was also examined and catego-
rized based on the size of the ischemic tissue. An ischemic
region above 10 cm3 was considered a large ischemic re-
gion, whereas a region below 10 cm3 was considered a
small or no ischemic region. Across the validation dataset
(n = 7,971), 10.39% of the data were identified as having
a large ischemic region (n = 828), and 89.61% of the data
were identified as having a small or no ischemic region (n



Figure 2. The sample regression curve of the network performance
on validation data. The predicted volumes by the ML network were com-
pared to the real volumes (blue circles, units of cm3). A linear line of best
fit was also visualized (orange). The best-performing model, network #3,
was used here for demonstration purposes.

= 7,143). The RMSE values for both groups were calcu-
lated and contrasted to the overall average.

3. Results

Five networks were trained and evaluated on the is-
chemic volume dataset. Across all networks, the peak R2

value for the validation dataset was found to be 0.937, and
the average R2 value was 0.932 ± 0.004 (Table 1).

Table 1. The R2 and the RMSE values from the validation
of the 5 ML networks

Network # Validation R2 RMSE (cm3)
1 0.936 1.084
2 0.931 1.129
3 0.937 1.079
4 0.926 1.171
5 0.931 1.130

Mean 0.932 1.119
±Standard Deviation ±0.004 ±0.034

The RMSE for each network was also calculated, with
the smallest error being 1.079 cm3 and the average being
1.119 ± 0.034 cm3 (Table 1). In general, as the R2 value
increases, the RMSE decreases in line with the improved
accuracy. The error can be more directly represented in a
regression curve (Figure 2).

Among the large ischemic region data, the average
RMSE across the 5 networks was found to be 1.900 ±

0.067 cm3, which represented a 70% increase compared
to the overall RMSE average. On the other hand, for data
with small or no ischemic regions, the average RMSE was
found to be 0.989 ± 0.035 cm3, a 12% decrease compared

to the overall RMSE average.

4. Discussion and Conclusions

In this study, 5 ML networks were trained on the same
regression task to predict the ischemic tissue volumes on
the simultaneously recorded body surface ECGs. The
best-performing network achieved a validation R2 value of
0.937, and all 5 networks achieved a validation R2 value
over 0.925. The average RMSE was 1.119 cm3 across
all networks, and no networks have an RMSE exceeding
1.180 cm3. The high R2 values and the low errors show
that the networks have robust performances when predict-
ing ischemic volumes directly from ECGs, a feature that
traditional ECG interpretation does not allow.

When comparing the prediction accuracy across differ-
ent ischemic sizes, the networks generally performed bet-
ter for small to no ischemic regions, according to the de-
crease in the average RMSE. Such results may indicate that
as the ischemic region size grows, the complexity of the
signal and difficulty in predicting its volume also grow.
The geography of the ischemic regions might also con-
tribute to this behavior. Particularly, the ischemic regions
usually localize to one territory in the heart, whereas the
body surface ECG data records over all territories. The
training dataset could also have more low ischemic volume
data points, leading to the bias in the performance.

The performance of the networks in ischemic volume
prediction suggests that the spatiotemporal design of the
network is advantageous in learning the features contained
in a multi-electrode ECG recording. Specifically, the de-
sign can incorporate the spatial correlations of the sig-
nals, due to their proximity in location, in addition to
the temporal features of the ECG waveform. The dis-
covery leads the way for an array of future applications
of this network design. In addition to independent ECG
analysis, the ML tools presented in this study can also
be combined with electrocardiographic imaging (ECGI)
techniques for localizing myocardial ischemia.[21] ECGI
techniques can leverage knowledge of the torso anatomy,
electrode locations, and electrical tissue conductivities,
thus providing a higher spatial resolution in estimating
the bioelectric sources in the heart than traditional 12-
Lead ECGs.[21] Such combined physics-based (ECGI)
and data-driven (ML) modeling may provide results supe-
rior to either alone.

One of the most substantial obstacles for ML network
training is the lack of high-quality data. This lack is a
problem especially when targeting human diseases, where
the availability of detailed datasets is often limited. In this
study, we leveraged a large animal model dataset to train
ML networks. In the future, other ML approaches could
benefit from training with animal datasets, and then pos-



sibly transitioning or transfer-learning to a human-specific
yet limited dataset.

Future studies should include the application of these
animal dataset-trained ML networks to various down-
stream tasks, such as other predictions within the ani-
mal dataset and possibly transitions to human datasets.
Explainability analysis would help elucidate the mecha-
nisms behind the ML-ECG analysis, given that myocar-
dial ischemia produces a readily recognizable ECG sig-
nature. Furthermore, the datasets in this study included
all the recordings across multiple varied ischemic inter-
ventions to represent a more diverse and representative
cohort. However, the data can be further divided into
preischemic and ischemic recordings, which may allow for
more complicated ML tasks such as predicting ischemic
response or outcome using preischemic signals. Such
a risk-stratification ML tool that uses only preischemic
ECG recordings would be helpful for clinical management.
Lastly, the scope of this study was limited to predicting
myocardial ischemic size only. Future applications of the
same approach could expand to other clinical metrics of
interest and create more useful tools for diagnosing and
monitoring cardiac diseases.
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