
Uncertainty Tube Visualization of Particle Trajectories
Jixian Li*

SCI Institute
Timbwaoga Aime
Judicael Ouermi†

SCI Institute

Mengjiao Han‡

Argonne National Laboratory
Chris R. Johnson§

SCI Institute

-Level of symmetry +

-U
nc

er
ta

in
ty

 +

(a) Spaghetti plot (b) Circular tube (c) Uncertainty Tube

Figure 1: Comparison of flow map uncertainty visualization techniques for the tornado dataset. This figure compares (a) a
spaghetti plot of ensemble members, (b) a circular tube, and (c) our uncertainty tube for visualizing model uncertainty. Previous
methods face challenges such as visual clutter (a) or the assumption of symmetric uncertainty (a, b), but our uncertainty tube
(c), constructed using superellipses, provides a more accurate visualization of asymmetric uncertainty. Its superelliptical shape
distinctly improves the visualization of the uncertainty orientation and its evolution along trajectories, as highlighted in the
boxes. The visualization is further enhanced with a color palette that uses gray for low uncertainty, blue for large asymmetric
uncertainty, and yellow for large symmetric uncertainty.

ABSTRACT

Predicting particle trajectories with neural networks (NNs) has sub-
stantially enhanced many scientific and engineering domains. How-
ever, effectively quantifying and visualizing the inherent uncer-
tainty in predictions remains challenging. Without an understand-
ing of the uncertainty, the reliability of NN models in applications
where trustworthiness is paramount is significantly compromised.
This paper introduces the uncertainty tube, a novel, computation-
ally efficient visualization method designed to represent this un-
certainty in NN-derived particle paths. Our key innovation is the
design and implementation of a superelliptical tube that accurately

*e-mail: jixianli@sci.utah.edu
†e-mail: touermi@sci.utah.edu
‡e-mail: hanm@anl.gov
§e-mail: crj@sci.utah.edu

captures and intuitively conveys nonsymmetric uncertainty. By
integrating well-established uncertainty quantification techniques,
such as Deep Ensembles, Monte Carlo Dropout (MC Dropout), and
Stochastic Weight Averaging-Gaussian (SWAG), we demonstrate
the practical utility of the uncertainty tube, showcasing its applica-
tion on both synthetic and simulation datasets.

Index Terms: Uncertainty visualization, vector field data, ma-
chine learning.

1 INTRODUCTION

Understanding and analyzing flow field data is fundamental for nu-
merous scientific and engineering disciplines, including fluid dy-
namics, atmospheric science, and material processing. Traditional
computational fluid dynamics (CFD) simulations are often compu-
tationally intensive, a limitation that has led researchers to explore
more efficient paradigms. This exploration has given rise to neural
networks (NNs) as a transformative tool in this domain, driven by
their capacity to overcome these computational bottlenecks. NNs
are now widely employed for tasks such as learning and emulating

complex turbulent fluid dynamics, enabling the rapid reconstruc-
tion of intricate flow fields from limited data, performing super-
resolution on coarse simulation outputs, and serving as highly ef-
ficient surrogate models that can predict flow behavior orders of
magnitude faster than conventional methods [38, 47, 64, 8]. No-
tably, recent work, such as Han et al. [26, 27], leverages NNs to
learn Lagrangian-based flow maps, enabling efficient and robust
particle tracing in time-varying fields. These data-driven models
demonstrate remarkable accuracy and speed, making them increas-
ingly indispensable for accelerating discovery and design cycles in
fluid dynamics.

Despite these advancements, a significant challenge remains in
providing a comprehensive understanding of the confidence associ-
ated with NN predictions in flow fields. Although NNs can effec-
tively capture complex dynamics, their outputs are typically deter-
ministic and lack explicit representations of predictive uncertainty.
To address this limitation, several uncertainty quantification (UQ)
methods have been developed for NNs, aiming to provide measures
of prediction reliability [1, 18, 50, 17, 41, 35]. These techniques
aim to estimate the confidence a model has in its output, distin-
guishing between inherent data variability and the model’s uncer-
tainty due to limited knowledge. However, effectively communicat-
ing these complex, often multidimensional uncertainty estimates to
researchers, particularly for dynamic elements such as particle tra-
jectories, remains a key challenge.

A recent work in uncertainty-aware deep neural representation
of vector fields by Kumar et al. [34], which is closely related to our
problem, utilizes circular tubes with varying radii to represent the
variation in steamlines. While the circular tube provides valuable
insights into trajectory variability, it assumes symmetric uncertainty
bounds and can oversimplify and misrepresent scenarios where un-
certainty is inherently asymmetric.

To address this limitation, this paper introduces the uncertainty
tube: a novel, computationally efficient visualization method de-
signed to represent prediction uncertainty in (NN)-derived particle
paths. We focus our use case on neural network-based trajectories,
but our method is generalizable to ensembles from other sources,
such as simulations. This uncertainty tube is designed to accurately
capture nonsymmetric uncertainty distributions, highlighting the di-
rection of variations. The contribution of the paper includes:

1. The uncertain estimation from ensemble trajectories and the
design of the uncertainty tube using superellipses and color
palettes for accurate and enhanced visualization.

2. The use of three datasets (synth, tornado, half cylinder) to
compare the uncertainty quantification methods (Monte Carlo
dropout, Deep Ensembles, and SWAG) and demonstrate the
capability of the uncertainty tube to accurately convey uncer-
tainty in particle trajectories.

2 RELATED WORKS

2.1 Flow Field Visualization

2.1.1 Lagrangian Flow Reconstruction and Visualization

Eulerian and Lagrangian reference frames are commonly used to
represent time-varying flow fields. In the Eulerian representation,
velocity fields are stored, and particle paths are computed by in-
tegrating over time. In contrast, the Lagrangian representation
uses flow maps to store particle start and end positions over a
given time interval, enabling trajectory computation through in-
terpolation. Each approach has its advantages and limitations.
The Eulerian method is computationally efficient but requires a
dense temporal resolution to achieve accurate trajectory recon-
struction [11, 49, 2, 58, 54, 61]. The Lagrangian method of-
fers a good accuracy–storage trade-off for exploring temporally

sparse datasets [2, 52, 61, 60] and directly supports feature extrac-
tion [16, 62, 22, 15, 31]. As a result, it has received increasing
attention in recent years.

In Lagrangian representation, the flow maps are typically com-
puted in situ, while particle trajectories are reconstructed post hoc
through interpolation. The accurate and fast reconstruction of new
trajectories from the flow maps is an important component of post
hoc analysis. Several methods have been proposed to enhance
reconstruction accuracy and accelerate neighbor lookup in parti-
cle trajectory reconstruction, including multiresolution refinement
through interpolation [3], parametric curve representations [7], and
efficient neighborhood search using k-d trees [9]. However, these
methods still face challenges in supporting real-time interpolation
and visualization of flows. To address these challenges, scien-
tists have been exploring deep-learning-based approaches [27, 26],
which will be described in the next subsection.

2.1.2 Deep Learning for Flow Visualization

In recent years, deep learning has gained significant traction in the
field of flow visualization [39]. They have been applied to a wide
range of tasks, such as optimizing data access patterns to improve
performance in distributed memory particle advection [30] and seg-
menting streamlines [37]. Deep learning has also been leveraged
for selecting representative sets of particle trajectories [59], often
using clustering approaches informed by learned features [23, 36].
In addition, many of the deep-learning techniques have been ex-
tended to directly integrate physical and conservation laws into the
NN [51, 4, 57]. These physics-informed deep-learning approaches
allow the models to learn from data while respecting underlying
physical principles, leading to improved robustness and accuracy.
Given the scale of flow datasets, data reduction and reconstruc-
tion have become prominent areas of focus. Several studies have
demonstrated the use of low-resolution vector fields [21, 19, 29] or
3D streamlines [24, 55] to reconstruct high-resolution flow fields.
In addition, recent work has explored temporal super-resolution of
time-varying vector fields [25, 5]. Jakob et al. [31], for example,
upsampled 2D FTLE scalar fields derived from Lagrangian flow
maps by employing efficient super-resolution architectures. More
recently, Sahoo et al. [56] introduced a method for compressing
and reconstructing time-varying flow fields using implicit neural
representations, demonstrating the promise of NNs for scalable and
accurate flow reconstruction.

Effectively visualizing flow map data depends on two key fac-
tors: (1) accurately reconstructing particle trajectories and (2) en-
abling interactive visualization and exploration of these trajecto-
ries, as discussed in the previous section. Han et al. [27] were the
first to employ a multilayer perceptron (MLP) architecture to re-
construct Lagrangian-based flow maps for a 2D analytical dataset.
Their follow-up work [26] extended this by validating the approach
on diverse 2D and 3D datasets and introducing a web-based viewer
for interactive flow visualization using fast neural inference. While
deep learning has been increasingly applied to flow visualization,
existing works rarely explore model uncertainty in detail. In this
work, we build upon the model proposed by Han et al. [26] and
extend it with a specific focus on evaluating model uncertainty.

2.2 Estimating Uncertainty in Machine Learning Models
Addressing the uncertainty in deep learning is an active research
area, with various approaches offering different trade-offs in rigor,
cost, and performance. In this paper, we focus on the model’s
epistemic uncertainty instead of aleatoric uncertainty resulting from
noise and randomness in the data. Here, we list some of the com-
mon uncertainty estimation methods:

Deep Ensembles [35]: This method involves training multi-
ple NNs independently from different random initializations. The
variance of predictions across these ensemble members quanti-

fies uncertainty. Deep Ensembles are empirically robust and well-
calibrated, but incur high computational costs during training due
to the requirement of multiple full models.

Monte Carlo Dropout (MC Dropout) [17]: MC Dropout
adapts dropout regularization for uncertainty estimation during in-
ference. This approach is computationally efficient because it does
not require additional training if dropout is already being used.
Despite these benefits and its wide adoption, others argue that its
predictive distribution does not align with a true Bayesian poste-
rior [14]. Still, MC Dropout remains a valuable technique for cap-
turing model uncertainty in many applications.

Bayesian Neural Networks (BNNs) and Approximations:
BNNs aim to model a probability distribution over network
weights, directly accounting for epistemic uncertainty. However,
the exact Bayesian inference in NNs is currently intractable due
to the high dimensionality and complexity of the posterior distri-
bution. To address this limitation, various approximation methods
such as Variational Inference [6], Markov Chain Monte Carlo [65],
Laplace Approximation [40], and Stochastic Weight Averaging-
Gaussian (SWAG) [41].

In this paper, we utilized the two methods used in Kumar et
al. [34], the Deep Ensembles and MC Dropout. We also added
SWAG to demonstrate how our visualization can be applied to dif-
ferent ensemble-based methods. Both MC Dropout and SWAG in-
troduce minimal computational overhead, which allows interactive
exploration and visualization of flow map uncertainty.

2.3 Uncertainty Visualization

Effectively visualizing uncertainty is important for data analysis
and decision-making [12, 53]. Researchers have developed numer-
ous visualization techniques to communicate uncertainty, ranging
from fundamental statistical glyphs to more advanced probabilis-
tic representations [28]. Notable contributions in the field include
the early review by Pang et al. [46], discussions on challenges and
approaches by Johnson and Sanderson [32], and the comprehen-
sive taxonomy of uncertainty visualization approaches by Potter et
al. [48]. More recently, Kamal et al. [33] provided a survey on re-
cent advances and ongoing challenges in the field, highlighting the
continuous importance of depicting data quality and variability to
ensure accurate interpretation.

Vector and flow field uncertainty visualization is challenging due
to the directional and dynamic nature of these fields. These chal-
lenges are further exacerbated when considering time-varying, mul-
tiple computational fields, and large-scale data. To convey uncer-
tainty, most techniques focus on representing variability of both
direction and magnitude. Early work explored glyph-based ap-
proaches, such as those by Wittenbrink et al. [66], for visualizing
uncertainty in vector fields. More recently, Ouermi et al. [45] have
advanced glyph-based uncertainty visualization for time-varying
vector fields. To represent topological properties of uncertain fields,
Otto et al. [43] and Otto et al. [44] introduced methods for uncer-
tain 2D and 3D vector field topology. Mirzargar et al. [42] proposed
curve boxplots as a generalization of traditional boxplots for ensem-
bles of curves, providing statistical summaries of trajectory bun-
dles. In addition to the depth-based boxplot idea, Ferstl et al. [13]
introduced variability plots to cluster and characterize the major
trends in the ensemble. Kumar et al. [34] have explored uncertainty-
aware deep neural representations to aid in the visual analysis of
vector field data. Extending Kumar et al.[34], which uses circu-
lar tubes with varying radii to represent uncertainty of integralines,
we use the uncertainty tube to better represent the non-symmetric
uncertainty.

3 BACKGROUND

3.1 Deep-Learning-Based Largrangian Flow Maps
Han et al. [27] introduced the first multilayer perceptron
(MLP)-based model to explore time-varying vector fields using
Lagrangian-based flow maps, which they later improved for more
accurate predictions and evaluated on multiple datasets [26]. In our
paper, the uncertainty measurements are based on the flow map NN
proposed by Han et al. [26], which is described below.

St
a

rt

F
il

e
C

yc
le

(d
im

, 1
28

)

(2
56

, 5
12

)

(1
28

, 2
56

)

(1
, 1

28
)

(2
56

, 5
12

)

(1
28

, 2
56

)

D
_i

n
 =

 1
02

4

Decoder

Sinusoidal Act ivat i onFC LayerInput /Output

E
n

d

(D
_i

n
, 1

02
4)

(1
02

4,
 5

12
)

(1
28

, 6
4)

(5
12

, 2
56

)

(2
56

, 1
28

)

Encoder

(6
4,

 d
im

)(5
12

, 5
12

)
(5

12
, 5

12
)

Figure 2: The MLP-based flow map NN proposed by Han et
al. [26]. This image, used with the authors’ permission, illustrates a
network configuration with four encoding layers, six decoding lay-
ers, and a latent vector dimension of 1024. The architecture begins
by taking two inputs: the particle’s initial position (Start) and the
number of file cycles (File Cycle). These inputs are first processed
by the encoder, which transforms them into a latent vector denoted
as D in. This latent vector is then passed to the decoder, which
outputs the particle’s predicted position (End) at the queried file
cycle. A sinusoidal activation function is applied after each fully
connected (FC) layer, except for the output layer.

3.1.1 Training Data Generation
In our work, we adopt only the Lagrangian long method intro-
duced by Han et al. [26], which generates a single flow map by
tracing long particle trajectories with uniform temporal sampling
along each integral curve. For seeding, we use a Sobol quasir-
andom sequence, which, as shown in previous work [27], outper-
forms pseudo-random sequences and uniform grid sampling. Once
the initial seeds are placed in the spatial domain, the particle tra-
jectories are calculated by advancing them from time t to t + δ ,
where δ represents one simulation time step (or cycle). Tracing
starts from the initial time t0 to the final time T , with the results
saved at each file cycle. The final training dataset is structured as
an m× n array, where m is the number of seeds and n is the num-
ber of file cycles. Each training sample contains a start position si
(where 0 ≤ i ≤ m−1), the corresponding file cycle index c j (where
0 ≤ j ≤ n− 1), and the end location (ℓi, j). The training dataset is
formatted as Eq. (1), allowing the model to learn both spatial and
temporal patterns in the flow field.

Input ={{s0, c0, ℓ0,0},{s0, c1, ℓ0,1}, ...,
{s0, cn−1, ℓ0,n−1}, ...,{sm−1, cn−1, ℓm−1,n−1}}.

(1)

3.1.2 Network Architecture
We adopt the MLP-based NN architecture proposed by Han et
al. [26] (see Fig. 2). The encoder E takes as input the particle
start locations and the corresponding file cycles, processing them
through two distinct sequences of fully connected (FC) layers. The
outputs of these sequences are concatenated to form a latent vector,
which is then passed to the decoder D. The decoder predicts the par-
ticle end locations, which are compared to the ground truth using

the L1 loss. The model uses the sine activation function through-
out. The network architecture is dynamic, featuring a configurable
number of encoder and decoder layers, as well as a variable latent
vector dimension.

3.2 Uncertainty Quantification for Deep Neural Net-
works

We employ three uncertainty quantification methods, Deep Ensem-
bles, MC Dropout, and SWAG, to assess the uncertainty in the flow
map prediction.

3.2.1 Deep Ensembles Method

A deep ensemble [35] consists of multiple, independently trained
neural networks on the same dataset, each with different random
initializations. This process leads each network to learn slightly
varied representations of the data. During inference, an input is
passed through every network, and the individual predictions are
aggregated. The final prediction is the mean of these outputs, while
the spread or disagreement among the predictions serves as a direct
measure of the model’s uncertainty. A high variance indicates low
model confidence, whereas low variance suggests high confidence
and model agreement.

3.2.2 Monte Carlo Dropout

Monte Carlo Dropout (MC Dropout) [17] estimates the uncertainty
in NNs by keeping dropout active during inference. For each for-
ward pass a random set of neuron is deactivated, enabling the single
network to behave like an ensemble of multiple sub-networks with-
out the computational burden of training multiple full models. The
MC Dropout predictive uncertainty is calculated by running multi-
ple forward passes (Monte Carlo samples) for the same input and
calculating the variation among the predictions.

3.2.3 Stochastic Weight Averaging-Gaussian

The Stochastic Weight Averaging-Gaussian (SWAG) [41] method
is an innovative approach designed to quantify uncertainty in NNs
while mitigating the high computational cost associated with tradi-
tional ensemble techniques. Unlike Deep Ensembles, which train
multiple models independently, SWAG focuses on capturing a dis-
tribution over the NN’s weights in a single training run. It achieves
this by averaging the network’s weights throughout training, partic-
ularly towards the end of the optimization process, and then fitting
a multivariate Gaussian distribution to these weights. The Gaus-
sian approximates the Bayesian posterior of the model weights. An
ensemble of models can be sampled from the Gaussian without re-
quiring the training of multiple models.

To leverage the SWAG method for uncertainty quantification, an
NN is first trained as usual. After the initial training phase, the
learning rate is often set to a high constant value, and the net-
work continues training using stochastic gradient descent (SGD)
for a few more epochs to explore the loss landscape more compre-
hensively, thereby avoiding being stuck in local minima. During
this fine-tuning phase, snapshots of the network’s weights are pe-
riodically saved and averaged to ensure stability and consistency.
Once this process is complete, a covariance matrix is estimated
from these collected weight samples, often using a low-rank ap-
proximation to ensure computational feasibility. For a new input,
predictions are then generated by sampling multiple sets of weights
from this approximated Gaussian distribution, effectively creating
a “virtual ensemble” from a single trained model. The spread of
these predictions, similar to a traditional ensemble, then indicates
the model’s predictive uncertainty.

(a) Spaghetti plot (b) Circular tube

(c) Uncertainty tube with τ = 2 (d) Uncertainty tube with τ = 4

Figure 3: For a given set of uncertainty samples (a), the circular
tube (b) does not visually encode the twisty motion or asymmetric
distribution. The elliptical tube (c) highlights the asymmetry with a
small hint of twistiness. The superelliptical tube (d) highlights both
asymmetry and twistiness.

4 VISUALIZING FLOW MAP UNCERTAINTY

4.1 Uncertainties of the Predicted Trajectories

Kumar et al. [34] visualize the integral line uncertainty using a cir-
cular tube, such that the variation is encoded as the radius of the
tube. Upon closer examination of the uncertainty samples from
multiple uncertainty quantification methods, we noticed that most
of the uncertainty obtained from these methods is not symmetric.
Visualizing them as a round tube hides the asymmetric nature of the
uncertainty distribution. We observed the asymmetry of the uncer-
tainty across models, datasets, and UQ methods. For some datasets,
we were able to utilize the asymmetry to enhance our understanding
of the data and improve the training of our model. More examples
of how we can use this information are presented in Sec. 6.

Figure 3a shows an example of nonsymmetrically distributed un-
certainty. The gray uncertainty samples exhibit more uncertainty in
one direction than the other. However, a spaghetti plot is not very
effective here because of the complex occlusion patterns. Mean-
while, as Fig. 3b demonstrates, a circular tube is not very effective
in representing asymmetric and twisty uncertainty, either. We need
a visual encoding that better captures the asymmetry and twisti-
ness while reducing the visual clutter introduced by visualizing all
uncertainty samples. We also need to compute the statistical sum-
mary sufficiently fast to avoid compromising the efficiency of our
NN flow map model. Therefore, we introduce the uncertainty tube
as demonstrated in Fig. 3c and Fig. 3d.

4.2 Uncertainty Tube

The uncertainty tubes are constructed by building a superelliptical
tube between two consecutive time steps, t −δ and t, starting from
the seed location. For an ensemble of particle trajectories with N
time steps, as illustrated in Fig. 4a, we start at the seed location
x(0), which is assumed to have no uncertainty. For each subsequent
time t = {δ , · · · ,Nδ}, We build the super elliptical tube between
t − δ and t. Let x(t)i be uncertainty samples at t and x̄(t) be the

mean of those points. We project all x(t)i to the plane orthogonal
to the direction from x̄(t−δ) to x̄(t) and passing through x̄(t). The
projection is defined by

p(t)
i = x(t)i − ((x(t)i − x̄(t)) ·d)d, (2)

(a) Step 1: Raw sample trajectories (b) Step 2: Uncertainty superellipse (c) Step 3: Tube mesh before alignment (d) Step 4: Uncertainty tube mesh

Figure 4: Uncertainty tube construction steps. This figure illustrates the design process for constructing the uncertainty tube, starting from
the raw trajectories shown in (a), followed by the projection to form superellipses in (b), and finally the alignment step in (c) and (d) to form
the uncertainty tube.

where d is the unit normal vector to the plane. This projection is
designed to capture the uncertainty in the orthogonal cross-section,
but does not account for the variation along the normal direction
(d).

We calculate the covariance matrix of the projected points and
its eigenvalue decomposition:

VΣVT =
1
N

N

∑
i=1

(pi − p̄) · (pi − p̄)T , (3)

where Σ and V are the eigenvalues and vectors, respectively. The
right-hand side of Eq. (3) shows the covariance calculation with p̄
being the mean of the projected points. The result from the decom-
position is then used to construct a superellipse according to

q(θ) = e(θ)VT + p̄, (4)

where the function e(θ) is defined according to

e(θ) =

(
2σ1|cos(θ)|

2
τ sgn(cos(θ))

2σ2|sin(θ)|
2
τ sgn(sin(θ))

)
,θ ∈ [0,2π], (5)

where σ1 and σ2 are the diagonal entities of Σ. The function sgn
returns the sign of its input value. The parameter τ ≥ 2 controls the
shape of the superellipse; For greater values of τ the superellipse
becomes more rectangular with sharp corners, whereas for τ = 2
the shape reduces to the standard ellipse. The results in this paper
use τ = 4. The superellipse centered at the mean p̄ summarises the
variance of the projected points. The superellipse representation
provides a more accurate representation of the direction variation
of the projected points compared to a standard circle. Addition-
ally, its rectangular shape helps clarify orientation more effectively
than a standard ellipse. These uncertainty superellipses are shown
in Fig. 4b. To form the uncertainty tube, the superellipses at t and
t+δ are sampled, and their corresponding boundary points are con-
nected.

However, the sampled points q(t)
j and q(t+δ)

j can be misaligned,
leading to warped and twisted superelliptical tubes, as shown in
Fig. 4c. To address this, we calculate an optimal circular shift and
reverse orientation ordering that minimizes the alignment score ac-
cording to

{r̂, ŝ}= argmin
r∈{0,1},s∈{0,1,··· ,m−1}

m

∑
j=1

∥q(t+δ ,r)
ℓ j

−q(t)
j ∥,

ℓ j = (j+ s)mod m.

(6)

The subscript ℓ j in Eq. (6) performs the circular shift at s, and a
reverse ordering is employed if r = 1. The aligned uncertainty tube
is shown in Fig. 4d.

Overall, the uncertainty tube significantly improves the rep-
resentation of asymmetric uncertainty compared to the circular
tube. Moreover, the superelliptical tube’s rectangular design dis-
tinctly shows the uncertainty orientation and its evolution along the
pathline more effectively than the circular and elliptical tubes, as
demonstrated in Fig. 3.

Seeds/Steps 10 50 100 150 200
10 401 440 561 608 653

100 625 744 868 971 1124
300 936 1220 1667 1823 2122
500 1029 1509 1957 2454 2994

Table 1: Uncertainty tube computation costs in milliseconds (ms)

4.3 Computation Efficiency
The computation of the uncertainty tube introduces a one-time cost
per user’s query. The overhead mainly consists of two parts: 1.
the UQ time measures the time it takes to obtain the uncertainty
samples. 2. The meshing time is the time it takes to compute the
mesh and texture coordinates.

The UQ time is reported in Sec. 5 for different methods. Here,
we report the meshing time on AMD Ryzen Threadripper 3970X
32-Core Processor using 32-core parallelization in Tab. 1. Each row
represents the number of seeds. Each column represents the number
of steps per trajectory. To compute the uncertainty tube, we use
50 uncertainty samples per trajectory. The number of uncertainty
samples within the range of 10 to 100 has a minimal impact on the
meshing time.

A typical setup in our data exploration stage uses 100 to 300
seeds to understand the global trend. All our datasets have 50 to 150
steps. We found that 30 to 50 uncertainty samples are sufficient to
build a meaningful statistical model of the uncertainty. This means
that uncertainty tube computation incurs a few seconds of overhead
per query, which still fits within the interactive exploration scheme
proposed in Han et al. [26] given ensemble samples from the UQ
method.

We normally spend a much longer time interacting with the ren-
dered scene than sending different queries. In our experiments, all
uncertainty tube visualization renders at 120 frames per second on
a 2023 MacBook Pro with an Apple M2 Max chip after the initial
rendering pass.

4.4 Uncertainty Coloring
Sometimes the geometry alone is not sufficient for the analysis of
uncertainty. For example, comparing Fig. 9a and Fig. 9c without
color is challenging because the camera is positioned far away to
reveal the dataset’s global pattern, and the size difference is visually
diminished. Therefore, we use color to help us compare uncertain-
ties at a different granularity.

Inspired by value-suppressing uncertainty palettes (VSUP) [10],
we employ a similar color map to represent the amount of uncer-
tainty and the level of symmetry. Our primary task is to visualize
the uncertainty of an ensemble of trajectories. Unlike the original
VSUP, we suppress trajectories with low uncertainty; that is, if the
prediction has low uncertainty, the colormap does not distinguish
between the levels of symmetry. We chose a light gray color, in-
dicating a low level of uncertainty. For high uncertainty, we use a
linear color palette to determine the level of symmetry. The level of
symmetry is determined by the ratio of the first two eigenvalues. 1

(a) 50 random pathlines (b) Test data (red) compared to model
prediction(blue)

Figure 5: Matplotlib demonstration of the synth dataset and train-
ing outcomes.

means symmetry, where the uncertainty tube would be round, and
0 means high asymmetry, indicating one major variation direction,
resulting in a flat uncertainty tube. The uncertainty colormap first
determines the color for the level of symmetry by linearly interpo-
lating the color palette. Then the final color can be computed by in-
terpolating between the color of symmetry and light gray according
to the level of uncertainty. The level of uncertainty is the magnitude
of the first eigenvalue, rescaled to a value between 0 and 1, accord-
ing to the user-set threshold. For example, the user could map the
98th percentile of the data to 1 to reduce the impact of extreme val-
ues. In the visualization, using the viridis colormap as an example,
gray represents low uncertainty, blue represents nonsymmetric un-
certainty, and yellow represents symmetric uncertainty. Figure 6
demonstrates how our colormap is applied in a synthetic dataset.

5 CONTROLLED EXPERIMENTS

We first use a synthetic dataset, labeled as synth, to demonstrate
different uncertainty quantification and visualization in a controlled
setting. The synth dataset is a time-varying vector field in which the
particles move in the positive z-direction. We introduce more com-
plexity as the z value increases. Hence, we expect the trained model
to exhibit more uncertainty in the positive z-direction. The domain
is [−1,1] for all axes. The seeding box is [−0.5,0.5], [−0.5,0.5],
and [−1,−0.9] for the x, y, and z axes, respectively. Each pathline
is traced 50 steps, including the seeds. Fig. 5a shows 50 random
pathlines traced from the seeding box. For the training data, we
use the Sobol method to generate 131,072 seed locations. The test-
ing dataset consists of 5,000 uniformly sampled seeds inside the
seeding box.

5.1 Deep Ensembles
To utilize the Deep Ensembles method, we independently trained
50 models on the same training dataset. To induce randomness in
the training process, we randomly shuffle the order of the training
dataset at each iteration. For each model, we use four encoder lay-
ers and four decoder layers, setting the latent dimension to 1024.
We train a total of 10,000 iterations. On two NVIDIA 3090 GPUs,
training each model takes approximately 3.5 minutes. The total
time for training 50 models is approximately 3 hours. Quantifying
uncertainty using the Deep Ensembles has a significant computa-
tional time overhead. However, we also notice that the Deep En-
sembles method reports uncertainty most faithful to our construct.
We did not try to optimize the training parameters for the optimal
training quality. On average, we expect an absolute difference of
0.027 between the predicted location and the truth. Figure 5b shows
the quality of the trained model on five randomly selected testing
pathlines. As expected, the error increases as z increases.

In practice, we often lack the testing data to assess the true er-
ror of the predictions. Thus, we rely on the uncertainty quantifica-

tion to provide insight into the model’s confidence. We sample 225
points within the seeding box and then evaluate the pathlines from
all 50 models. We calculate the mean pathline across 50 models and
use the 51 paths per seed to build the uncertainty tube. Figure 6a
shows the uncertainty tube visualization, from which we observe
that the models exhibit higher variation in the positive z direction
(rightward), aligning with our expectation. We also noticed that
in the high-uncertainty regions, the distribution of uncertainty tra-
jectories is mostly asymmetric, as indicated by the predominance
of blue hues toward the end. We selected one pathline with high
uncertainty from the scene to demonstrate the bias in Fig. 7a.

In summary, the Deep Ensembles method provides a good
demonstration of uncertainty, aligning with our data constructions,
but at a relatively high computational cost, as noticed in other works
that utilize the Deep Ensembles method.

5.2 MC Dropout

MC Dropout introduces the least amount of overhead among the
three UQ methods used in this paper, provided that dropout is al-
ready part of the model during training. Evaluating 225 trajectories
with 50 uncertainty samples takes less than 400 milliseconds. It re-
quires modifying the model by appending dropout layers if dropout
is not already part of the training.

To conduct the MC Dropout experiments, we implemented two
ways of appending dropout layers. The first way is to append a
dropout layer after every activation. The second approach is to ap-
pend a dropout layer after the last activation. Table 2 demonstrates
the impact of adding dropout on the testing metric, namely, the ab-
solute difference between the prediction and the truth. We confirm
the finding in Kumar et al. [34] that adding dropout results in a de-
crease in prediction quality. For our model, dropping out after all
activation layers at a rate of 0.001 has minimal impact on prediction
quality, and it closely matches the original proposed MC Dropout
method [17]. We use this configuration to produce the outcomes
shown in Fig. 6b.

Figure 6b shows the pathlines evaluated from the same set of
seeds used to demonstrate the Deep Ensembles method. The mag-
nitude of uncertainty estimated by MC Dropout is larger than Deep
Ensembles’ result in the low-uncertainty region, as shown by the
colorfulness of the uncertainty tubes. At the same time, the high-
uncertainty region (bottom right) shows a smaller uncertainty mag-
nitude compared to the result from Deep Ensembles. However,
overall, the MC Dropout exhibits higher uncertainty at larger z val-
ues, as demonstrated by the change in size of the uncertainty tubes.
Fig. 7b also shows that MC Dropout’s result may be significantly
different than the results of the other two methods.

In summary, MC Dropout is a straightforward method that incurs
no additional training costs. Due to neural networks’ efficient infer-
ence capability, the overhead of running multiple inference passes
is minimal. However, while originally proposed as an approximate
Bayesian method, it is difficult to rigorously argue that the samples
from MC Dropout are drawn from a true Bayesian posterior distri-
bution. This is because dropout randomly sets activations to zero,
and the underlying theoretical approximations are often not strictly
met in practice. Indeed, research by Folgoc et al. [14] has strongly
argued that MC Dropout does not perform approximate Bayesian
inference.

5.3 SWAG

Maddox et al. [41] introduced the SWAG method in 2019. Despite
its simple and efficient utilization, we have yet to see it being used
for visualizing uncertainty in the visualization community. This
method introduces minimal overhead and does not require modifi-
cation to the model. However, it requires careful tuning of hyper-
parameters. We report a hyperparameter study in Sec. 5.3.1.

- Level of symmetry +

-U
nc

er
ta

in
ty

 +

(a) Deep Ensembles (b) MC Dropout (c) SWAG

Figure 6: Uncertainty tube visualizations of 225 pathlines from synth dataset using three quantification methods. The z value, hence the
introduced uncertainty, increases from left to right. Each tube is computed from 50 uncertainty samples.

dropout rates 0.1 0.05 0.04 0.03 0.02 0.01 0.005 0.001
all layers 0.034 0.031 0.030 0.029 0.029 0.028 0.028 0.027
last layer 0.032 0.028 0.029 0.029 0.028 0.028 0.028 0.027

Table 2: Test errors (absolute differences) for synth of different dropout methods and rates.

(a) Deep Ensembles

- Level of symmetry +

-
U

nc
er

ta
in

ty
 +

(b) MC Dropout (c) SWAG

Figure 7: Uncertainty tube visualizations of one pathline from
synth dataset that has a large variation at the end using three quan-
tification methods. The seed location is at (-0.45,-0.1,-0.95).

We generated Fig. 6c to demonstrate the uncertainty estimated
by the SWAG method. SWAG requires some additional training
from a pre-trained model. Training 1000 steps using SGD takes 15
seconds on a NVIDIA 3090. Thus, we can quickly experiment with
different hyperparameters in our applications.

Figure 6c shows that our SWAG model reports slightly higher
uncertainty at the beginning (left) and lower uncertainty at the end
compared to Deep Ensembles. However, the overall trend aligns
with the result of Deep Ensembles. Especially, Fig. 7c shows that
the uncertainty direction matches closer to the Deep Ensembles re-
sult, compared to the MC Dropout result.

In summary, SWAG gives a descent uncertainty quantification of
the model, and it is easy to set up and use. Although it requires care-
ful hyperparameter tuning, this process is not overly complicated.
We recommend that users start with a rank of 100 and find the ideal
swag lr and n swag samples first, then adjust other parameters as
needed.

5.3.1 SWAG hyperparameter study
Here, we present a hyperparameter study for our synth model. In
our implementation, we exposed five hyperparameters: swag lr,
n swag samples, rank, sgd weight decay, sgd momemtum. The
swag lr controls the step size of the SGD in SWAG training. Mad-
dox et al. [41] recommend a high constant learning rate so that SGD

explores the model’s weight space instead of simply converging to
a local minimum. The number of steps SWAG training takes is
the n swag samples. It needs to be set to a sufficiently large num-
ber to explore the weight space. And it heavily impacts the SWAG
training time. Rank is the rank of the low-rank approximation of
the covariance matrix of the multivariate Gaussian. The covariance
matrix captures the correlation among the model parameters. Mad-
dox et al. [41] stated that weight decay and momentum need to be
explicitly specified. Then, SWAG can be viewed as a Bayesian in-
ference approximation because weight decay with momentum cor-
responds to the prior distribution of the model weights.

We start from the base hyperparameter used in
Fig. 6c: swag lr=5e − 4, n swag samples=1000, rank=100,
sgd weight decay=1e − 8, sgd momemtum=0.9. We tested the
swag lr = [1e−2,1e−4,1e−8], n swag samples = [10,50,100],
rank = [10,50,1000]. For n swag samples, we also match the
rank. The sgd weight decay and sgd momemtum parameters are
set to 1e− 8 and 0.9, respectively. We omit exploring these two
parameters and recommend setting them according to the optimal
training parameters.

The hyperparameter exploration results are presented in Fig. 8.
For the swag lr parameter, we recommend examining the global
pattern of the network’s predictions. That is, if uncertainty is
globally high, we recommend reducing the swag lr. In our test,
we tested up to 1e − 8, and the SWAG samples still show rea-
sonable uncertainty because we set n swag samples sufficiently
large. n swag samples controls the number of steps SWAG takes
in the model’s weight space, and swag lr controls the step size.
The combination of those should be large enough to explore the
weight space. Fig. 8d shows the classical underexplored weight
space, showing no uncertainty in the model’s prediction. The
n swag samples parameter has a significant impact on the SWAG
training time. In our experiments, the time it takes to train for 10,
50, 100, and 1000 steps is 1 second, 3 seconds, 6 seconds, and 15
seconds, respectively. We use a conservative setting of 1000 in this
study.

As shown in the third row of Fig. 8, the effect of the rank pa-
rameter is not straightforward. The rank parameter sets the rank of
the low-rank approximation of the covariance matrix of the model
parameters. The consequence of the correlation between model pa-
rameters on the final prediction is not immediately clear to us. If
the model is sufficiently small, we recommend examining the sin-

(a) swag lr=1e-2 (b) swag lr=1e-4 (c) swag lr=1e-8

(d) n swag samples=10, rank = 10 (e) n swag samples=50, rank = 50 (f) n swag samples=100, rank = 100

(g) rank=10 (h) rank=50 (i) rank=1000

Figure 8: Hyperparameter test results of SWAG.

gular values obtained from the singular value decomposition of the
full-rank covariance matrix and selecting the smallest reasonable
rank for the low-rank approximation. In our experiment across
different datasets and models, we found that 100 is a sufficiently
large number. The rank also affects the SWAG training time and
the time it takes to draw samples from the Gaussian. For ranks
10, 50, 500, 1000, the training takes 13, 13, 17, 29 seconds for
1000 n swag samples. Drawing 50 samples from the fitted Gaus-
sian takes 32, 61, 320, and 700 milliseconds, respectively.

Across all hyperparameter tests, we compute the uncertainty
tube using 25 seeds and 50 uncertainty samples, in addition to the
original model’s prediction. The model evaluation for the 25× 51
pathlines takes 90 milliseconds, and the computation of the 25 un-
certainty tubes takes approximately 350 milliseconds.

6 RESULTS

6.1 Tornado
This example utilizes flow maps generated from a synthetic tor-
nado vector field dataset in Güther et al. [20]. We employ a flow
map NN with four encoder layers, a 512 latent vector, and six de-
coder layers. The NN is trained on 131072 = 217 trajectories in-
tegrated over 100 time steps with δ = 0.1 and using Sobol seeds
within subdomain [−5,5]× [−5,5]× [−10,10]. Our goal is to com-
pare different visualization techniques for visualizing the model un-
certainty calculated using the SWAG method.

Figure 1 compares the spaghetti plot of ensemble members, the
circular tube visualization, and the uncertainty tube for representing

the model uncertainty. The ensemble visualization in Fig. 1.a leads
to visual clutter that hinders the interpretation of the flow patterns.
Additionally, the ensemble trajectories do not intuitively convey the
model’s uncertainty. The circular tube visualization in Fig. 1.b re-
duces the clutter and provides a better visual summary of the un-
certainty compared to the spaghetti plot. However, it incorrectly
assumes a symmetric distribution of trajectories around the mean.
The uncertainty tube described in Sec. 4.2 encodes the variation di-
rection using the major and minor axes of superellipses, as shown
in Fig. 1.c. Our uncertainty tube enhances the distinction between
the major and minor directions of variation and the visualization
of how the direction changes along the trajectory integration, as
depicted in boxes shown in Fig. 1. The uncertainty tube in the
right box provides a more detailed representation, where changes
in orientation and twisting along the trajectory are distinctly vis-
ible. In contrast, the circular tube on the left fails to capture or
convey these variations. In cases of subtle changes along the trajec-
tory, the color palette further enhances the distinction between low
and high uncertainty, and between symmetric and nonsymmetric
uncertainty. Overall, the uncertainty tube yields superior results in
estimating and visualizing model uncertainty compared to the other
approaches.

6.2 Half cylinder

The half cylinder dataset is a time-varying flow field simulating
flow over a half cylinder towards the positive x-direction. Visual-
izing asymmetric uncertainty enabled us to train a more accurate

(a) Uncertainty from a model trained according to Han et al.[26]. (b) A view looking at yz-plane from +x.

- Level of symmetry +

-U
nc

er
ta

in
ty

 +

(c) Uncertainty from a model trained with spatially uniform scaling. (d) A view looking at yz-plane from +x.

Figure 9: Uncertainty Tube visualization of half cylinder dataset.

model.
In Han et al. [26], the data is mapped into a [−1,1]3 space by

rescaling the bounding box of the data. In Fig. 9a, we notice that
all the uncertainty tubes appear flat in the y-direction, as shown in
Fig. 9b. We suspect the flatness is caused by nonspatially uniform
scaling of the data. We rescaled the data according to the actual
ratio in the domain, so [−1,1]3 represents a cube of size 83 in the
domain. Although the training box [−1,1]3 now contains empty
spaces, spatially uniform scaling has reduced the evaluation error
from 0.0058 to 0.0047. The evaluation error represents the abso-
lute difference between the predicted location and the true location
of the validation dataset in the original domain. We ran multiple
random seeds to compare different training processes and consis-
tently observed a reduction in the evaluation error. We also noticed
a similar improvement by applying spatially uniform scaling of the
Hurricane dataset used in Han et al. [26]. However, the gener-
alizability of this finding to other MLP-based networks with sine
activation is beyond the scope of this paper.

Another interesting effect is that, despite improved model qual-
ity, the amount of uncertainty (measured by the maximum eigen-
value) increased. This is illustrated by Fig. 9a showing more gray
than Fig. 9c. Throughout our experiment, we consistently observed
a mismatch between the amount of error and the model’s uncer-
tainty estimation. This mismatch means that extra caution is re-
quired when interpreting the results of uncertainty estimation, as
they do not always reflect the actual model error but the model’s
confidence in its prediction.

7 DISCUSSION

This paper introduced the uncertainty tube, a novel and computa-
tionally efficient visualization method for representing prediction
uncertainty in neural network-derived particle trajectories. We de-

sign and implement a superelliptical tube that uniquely captures
and intuitively conveys asymmetric uncertainty, thereby overcom-
ing the limitations of conventional methods that typically assume
symmetric uncertainty bounds. By integrating well-established un-
certainty quantification techniques, including Deep Ensembles, MC
Dropout, and SWAG, we demonstrated that the uncertainty tube
significantly improves the representation of asymmetric uncertainty
compared to the circular tube. Moreover, its rectangular design dis-
tinctly shows the uncertainty orientation and its evolution along the
pathline more effectively than the circular and elliptical tubes. Our
VSUP-inspired color map further helps distinguish different types
of uncertainty when visualizing 3D geometries. In addition, we
demonstrated one use case where we utilize asymmetric uncertainty
to enhance training. We hope to explore additional ways to utilize
uncertainty information to better understand the data, training, and
models in the future.

The uncertainty tube visualization of the trajectory has some lim-
itations. For example, when constructing the uncertainty tube, we
projected the point at each step onto the plane orthogonal to the
mean trajectory. This process eliminates the uncertainty along the
mean trajectory. We could use color or texture to represent that type
of uncertainty, or use local superquadric glyphs [63] to character-
ize the variation of all directions. Here, we focus on developing a
visual representation that highlights the asymmetric nature of un-
certainty in NN-based trajectories. A user-based study is necessary
to evaluate the effectiveness and expressiveness of visual encoding
for future research.

An important next step involves investigating more compre-
hensive uncertainty quantification methods, such as fully modeled
Bayesian networks, especially to investigate how uncertainty is
propagated through the data analysis pipeline. The way we utilized
the three UQ methods in this paper assumes no uncertainty in the
training data, which is rarely true in real-world applications.

ACKNOWLEDGMENTS

This work was partially supported by the Intel OneAPI CoE, the
Intel Graphics and Visualization Institutes of XeLLENCE, and the
DOE Ab-initio Visualization for Innovative Science (AIVIS) grant
2428225.

REFERENCES

[1] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya,
V. Makarenkov, and S. Nahavandi. A review of uncertainty quantifi-
cation in deep learning: Techniques, applications and challenges. In-
formation Fusion, 76:243–297, 2021. doi: 10.1016/j.inffus.2021.05.
008 2

[2] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and
H. Childs. Improved Post Hoc Flow Analysis Via Lagrangian Rep-
resentations. In 2014 IEEE 4th Symposium on Large Data Analysis
and Visualization (LDAV), pp. 67–75, 2014. 2

[3] A. Agranovsky, H. Obermaier, C. Garth, and K. I. Joy. A Multi-
Resolution Interpolation Scheme for Pathline Based Lagrangian Flow
Representations. In Visualization and Data Analysis 2015, vol. 9397,
p. 93970K, 2015. 2

[4] A. Arzani, J.-X. Wang, M. S. Sacks, and S. C. Shadden. Machine
learning for cardiovascular biomechanics modeling: challenges and
beyond. Annals of Biomedical Engineering, 50(6):615–627, 2022. 2

[5] K. Bao, X. Zhang, W. Peng, and W. Yao. Deep learning method for
super-resolution reconstruction of the spatio-temporal flow field. Ad-
vances in Aerodynamics, 5(1):19, 2023. 2

[6] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight
uncertainty in neural networks. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning
- Volume 37, ICML’15, p. 1613–1622. JMLR.org, 2015. 3

[7] R. Bujack and K. I. Joy. Lagrangian Representations of Flow Fields
with Parameter Curves. In 2015 IEEE 5th Symposium on Large Data
Analysis and Visualization (LDAV), pp. 41–48. IEEE, 2015. 2

[8] G. Calzolari and W. Liu. Deep learning to replace, improve, or aid
cfd analysis in built environment applications: A review. Building
and Environment, 206:108315, 2021. doi: 10.1016/j.buildenv.2021.
108315 2

[9] J. Chandler, H. Obermaier, and K. I. Joy. Interpolation-Based Pathline
Tracing in Particle-Based Flow Visualization. IEEE transactions on
visualization and computer graphics, 21(1):68–80, 2014. 2

[10] M. Correll, D. Moritz, and J. Heer. Value-suppressing uncertainty
palettes. In ACM Human Factors in Computing Systems (CHI), 2018.
5

[11] M. V. Da Costa and B. Blanke. Lagrangian methods for flow cli-
matologies and trajectory error assessment. Ocean Modelling, 6(3-
4):335–358, 2004. 2

[12] X. Dong and C. C. Hayes. Uncertainty visualizations: Helping deci-
sion makers become more aware of uncertainty and its implications.
Journal of Cognitive Engineering and Decision Making, 6(1):30–56,
March 2012. 3

[13] F. Ferstl, K. Bürger, and R. Westermann. Streamline variability plots
for characterizing the uncertainty in vector field ensembles. IEEE
Transactions on Visualization and Computer Graphics, 22(1):767–
776, 2016. doi: 10.1109/TVCG.2015.2467204 3

[14] L. L. Folgoc, V. Baltatzis, S. Desai, A. Devaraj, S. Ellis, O. E. M. Man-
zanera, A. Nair, H. Qiu, J. Schnabel, and B. Glocker. Is mc dropout
bayesian? arXiv preprint arXiv:2110.04286, 2021. 3, 6

[15] G. Froyland and O. Junge. Robust FEM-Based Extraction of Finite-
Time Coherent Sets Using Scattered, Sparse, and Incomplete Trajecto-
ries. SIAM Journal on Applied Dynamical Systems, 17(2):1891–1924,
2018. 2

[16] G. Froyland and K. Padberg-Gehle. A rough-and-ready cluster-based
approach for extracting finite-time coherent sets from sparse and in-
complete trajectory data. Chaos: An Interdisciplinary Journal of Non-
linear Science, 25(8):087406, 2015. 2

[17] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In M. F. Balcan
and K. Q. Weinberger, eds., Proceedings of The 33rd International

Conference on Machine Learning, vol. 48 of Proceedings of Machine
Learning Research, pp. 1050–1059. PMLR, New York, New York,
USA, 20–22 Jun 2016. 2, 3, 4, 6

[18] M. Ganaie, M. Hu, A. Malik, M. Tanveer, and P. Suganthan. Ensemble
deep learning: A review. Engineering Applications of Artificial Intel-
ligence, 115:105151, 2022. doi: 10.1016/j.engappai.2022.105151 2

[19] H. Gao, L. Sun, and J.-X. Wang. Super-resolution and denoising of
fluid flow using physics-informed convolutional neural networks with-
out high-resolution labels. Physics of Fluids, 33(7):073603, 2021. 2

[20] T. Günther, C. Rössl, and H. Theisel. Opacity optimization for 3d line
fields. ACM Trans. Graph., 32(4), July 2013. doi: 10.1145/2461912.
2461930 8

[21] L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, D. Z. Chen, J.-X. Wang,
and C. Wang. SSR-VFD: Spatial Super-Resolution for Vector Field
Data Analysis and Visualization. In 2020 IEEE Pacific Visualization
Symposium (PacificVis), pp. 71–80. IEEE Computer Society, 2020. 2

[22] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland, and
G. Haller. A Critical Comparison of Lagrangian Methods for Co-
herent Structure Detection. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 27(5):053104, 2017. 2

[23] J. Han, J. Tao, and C. Wang. FlowNet: A Deep Learning Frame-
work for Clustering and Selection of Streamlines and Stream Sur-
faces. IEEE transactions on visualization and computer graphics,
26(4):1732–1744, 2018. 2

[24] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang. Flow
Field Reduction Via Reconstructing Vector Data From 3-D Stream-
lines Using Deep Learning. IEEE computer graphics and applica-
tions, 39(4):54–67, 2019. 2

[25] J. Han and C. Wang. Tsr-vfd: Generating temporal super-resolution
for unsteady vector field data. Computers & Graphics, 103:168–179,
2022. 2

[26] M. Han, J. Li, S. Sane, S. Gupta, B. Wang, S. Petruzza, and C. R. John-
son. Interactive Visualization of Time-Varying Flow Fields Using
Particle Tracing Neural Networks . In 2024 IEEE 17th Pacific Visu-
alization Conference (PacificVis), pp. 52–61. IEEE Computer Society,
Los Alamitos, CA, USA, Apr. 2024. doi: 10.1109/PacificVis60374.
2024.00015 2, 3, 5, 9

[27] M. Han, S. Sane, and C. R. Johnson. Exploratory Lagrangian-Based
Particle Tracing Using Deep Learning. Journal of Flow Visualiza-
tion and Image Processing, 2022. doi: 10.1615/JFlowVisImageProc.
2022041197 2, 3

[28] C. D. Hansen, M. Chen, C. R. Johnson, A. E. Kaufman, and H. Ha-
gen. Scientific Visualization: Uncertainty, Multifield, Biomedical, and
Scalable Visualization. Springer Publishing Company, Incorporated,
2014. 3

[29] K. Höhlein, M. Kern, T. Hewson, and R. Westermann. A comparative
study of convolutional neural network models for wind field down-
scaling. Meteorological Applications, 27(6):e1961, 2020. 2

[30] F. Hong, J. Zhang, and X. Yuan. Access Pattern Learning with Long
Short-Term Memory for Parallel Particle Tracing. In 2018 IEEE Pa-
cific Visualization Symposium (PacificVis), pp. 76–85. IEEE, 2018. 2

[31] J. Jakob, M. Gross, and T. Günther. A Fluid Flow Data Set for Ma-
chine Learning and its Application to Neural Flow Map Interpola-
tion. IEEE Transactions on Visualization and Computer Graphics,
27(2):1279–1289, 2020. 2

[32] C. Johnson and A. Sanderson. A next step: Visualizing errors and
uncertainty. IEEE Computer Graphics and Applications, 23(5):6–10,
2003. doi: 10.1109/MCG.2003.1231171 3

[33] A. Kamal, P. Dhakal, A. Y. Javaid, V. K. Devabhaktuni, D. Kaur,
J. Zaientz, and R. Marinier. Recent advances and challenges in un-
certainty visualization: a survey. Journal of Visualization, 24(5):861–
890, Oct 2021. doi: 10.1007/s12650-021-00755-1 3

[34] A. Kumar, S. Garg, and S. Dutta. Uncertainty-aware deep neural
representations for visual analysis of vector field data. IEEE Trans-
actions on Visualization and Computer Graphics, 31(1):1343–1353,
2025. doi: 10.1109/TVCG.2024.3456360 2, 3, 4, 6

[35] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Pro-
ceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, p. 6405–6416. Curran Associates Inc.,

Red Hook, NY, USA, 2017. 2, 4
[36] J.-Y. Lee and J. Park. Deep Regression Network-Assisted Efficient

Streamline Generation Method. IEEE Access, 9:111704–111717,
2021. 2

[37] Y. Li, C. Wang, and C.-K. Shene. Extracting Flow Features via Super-
vised Streamline Segmentation. Computers & Graphics, 52:79–92,
2015. 2

[38] M. Lino, S. Fotiadis, A. A. Bharath, and C. D. Cantwell. Current and
emerging deep-learning methods for the simulation of fluid dynam-
ics. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 479(2275):20230058, 2023. doi: 10.1098/rspa
.2023.0058 2

[39] C. Liu, R. Jiang, D. Wei, C. Yang, Y. Li, F. Wang, and X. Yuan. Deep
Learning Approaches in Flow Visualization. Advances in Aerodynam-
ics, 4(1):1–14, 2022. 2

[40] D. J. C. MacKay. A practical bayesian framework for backpropagation
networks. Neural Computation, 4(3):448–472, 1992. doi: 10.1162/
neco.1992.4.3.448 3

[41] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson.
A simple baseline for bayesian uncertainty in deep learning. In Ad-
vances in Neural Information Processing Systems, pp. 13153–13164,
2019. 2, 3, 4, 6, 7

[42] M. Mirzargar, R. T. Whitaker, and R. M. Kirby. Curve boxplot: Gen-
eralization of boxplot for ensembles of curves. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2654–2663, 2014. doi:
10.1109/TVCG.2014.2346455 3

[43] M. Otto, T. Germer, H.-C. Hege, and H. Theisel. Uncertain 2D Vector
Field Topology. Computer Graphics Forum, 2010. doi: 10.1111/j.
1467-8659.2009.01604.x 3

[44] M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3d vec-
tor fields. In 2011 IEEE Pacific Visualization Symposium, pp. 67–74,
2011. doi: 10.1109/PACIFICVIS.2011.5742374 3

[45] T. A. J. Ouermi, J. Li, Z. Morrow, B. Van Bloemen Waanders, and
C. R. Johnson. Glyph-Based Uncertainty Visualization and Analysis
of Time-Varying Vector Fields . In 2024 IEEE Workshop on Uncer-
tainty Visualization: Applications, Techniques, Software, and Deci-
sion Frameworks, pp. 73–77. IEEE Computer Society, Los Alamitos,
CA, USA, Oct. 2024. doi: 10.1109/UncertaintyVisualization63963.
2024.00014 3

[46] A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. Approaches to uncer-
tainty visualization. The Visual Computer, 13(8):370–390, Nov 1997.
doi: 10.1007/s003710050111 3

[47] P. Pant, R. Doshi, P. Bahl, and A. Barati Farimani. Deep learning
for reduced order modelling and efficient temporal evolution of fluid
simulations. Physics of Fluids, 33(10):107101, 10 2021. doi: 10.1063/
5.0062546 2

[48] K. Potter, P. Rosen, and C. R. Johnson. From quantification to visual-
ization: A taxonomy of uncertainty visualization approaches. In A. M.
Dienstfrey and R. F. Boisvert, eds., Uncertainty Quantification in Sci-
entific Computing, pp. 226–249. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. 3

[49] X. Qin, E. van Sebille, and A. S. Gupta. Quantification of errors
induced by temporal resolution on lagrangian particles in an eddy-
resolving model. Ocean Modelling, 76:20–30, 2014. 2

[50] R. Rahaman and a. thiery. Uncertainty quantification and deep ensem-
bles. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, eds., Advances in Neural Information Processing Systems,
vol. 34, pp. 20063–20075. Curran Associates, Inc., 2021. 2

[51] M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686–707, 2019. doi: 10.1016/j.jcp.2018
.10.045 2

[52] T. Rapp, C. Peters, and C. Dachsbacher. Void-and-Cluster Sampling
of Large Scattered Data and Trajectories. IEEE transactions on visu-
alization and computer graphics, 26(1):780–789, 2019. 2

[53] J. Reyes, A. U. Batmaz, and M. Kersten-Oertel. Trusting ai: does un-
certainty visualization affect decision-making? Frontiers in Computer
Science, 7:1464348, 2025. 3

[54] M. P. Rockwood, T. Loiselle, and M. A. Green. Practical concerns

of implementing a finite-time lyapunov exponent analysis with under-
resolved data. Experiments in Fluids, 60(4):1–16, 2019. 2

[55] S. Sahoo and M. Berger. Integration-Aware Vector Field Super Reso-
lution. 2021. 2

[56] S. Sahoo, Y. Lu, and M. Berger. Neural flow map reconstruction.
Computer Graphics Forum, 41(3):391–402, 2022. doi: 10.1111/cgf.
14549 2

[57] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and
P. Battaglia. Learning to simulate complex physics with graph net-
works. In H. D. III and A. Singh, eds., Proceedings of the 37th Inter-
national Conference on Machine Learning, vol. 119 of Proceedings of
Machine Learning Research, pp. 8459–8468. PMLR, 13–18 Jul 2020.
2

[58] S. Sane, R. Bujack, and H. Childs. Revisiting the Evaluation of In Situ
Lagrangian Analysis. In EGPGV@ EuroVis, pp. 63–67, 2018. 2

[59] S. Sane, R. Bujack, C. Garth, and H. Childs. A Survey of Seed Place-
ment and Streamline Selection Techniques. In Computer Graphics
Forum, vol. 39, pp. 785–809. Wiley Online Library, 2020. 2

[60] S. Sane and H. Childs. Exploratory Time-Dependent Flow Visual-
ization via In Situ Extracted Lagrangian Rßepresentations. In In Situ
Visualization for Computational Science, pp. 91–109. Springer, 2022.
2

[61] S. Sane, C. R. Johnson, and H. Childs. Investigating In Situ Reduc-
tion via Lagrangian Representations for Cosmology and Seismology
Applications. In International Conference on Computational Science,
pp. 436–450. Springer, 2021. 2

[62] K. L. Schlueter-Kuck and J. O. Dabiri. Coherent structure colouring:
identification of coherent structures from sparse data using graph the-
ory. Journal of Fluid Mechanics, 811:468–486, 2017. 2

[63] T. Schultz and G. L. Kindlmann. Superquadric glyphs for symmetric
second-order tensors. IEEE Transactions on Visualization and Com-
puter Graphics, 16(6):1595–1604, 2010. doi: 10.1109/TVCG.2010.
199 9

[64] N. Thuerey, K. Weißenow, L. Prantl, and X. Hu. Deep learning meth-
ods for reynolds-averaged navier–stokes simulations of airfoil flows.
AIAA Journal, 58(1):25–36, 2020. doi: 10.2514/1.J058291 2

[65] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient
langevin dynamics. In Proceedings of the 28th International Confer-
ence on International Conference on Machine Learning, ICML’11, p.
681–688. Omnipress, Madison, WI, USA, 2011. 3

[66] C. Wittenbrink, A. Pang, and S. Lodha. Glyphs for visualizing un-
certainty in vector fields. IEEE Transactions on Visualization and
Computer Graphics, 2(3):266–279, 1996. doi: 10.1109/2945.537309
3

	Introduction
	Related Works
	Flow Field Visualization
	Lagrangian Flow Reconstruction and Visualization
	Deep Learning for Flow Visualization

	Estimating Uncertainty in Machine Learning Models
	Uncertainty Visualization

	Background
	Deep-Learning-Based Largrangian Flow Maps
	Training Data Generation
	Network Architecture

	Uncertainty Quantification for Deep Neural Networks
	Deep Ensembles Method
	Monte Carlo Dropout
	Stochastic Weight Averaging-Gaussian

	Visualizing Flow Map Uncertainty
	Uncertainties of the Predicted Trajectories
	Uncertainty Tube
	Computation Efficiency
	Uncertainty Coloring

	Controlled Experiments
	Deep Ensembles
	MC Dropout
	SWAG
	SWAG hyperparameter study

	Results
	Tornado
	Half cylinder

	Discussion

