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Abstract—Air quality impacts on human health are an increas-
ing concern globally. Vehicle pollution is a particular concern
because of its multiple adverse health effects, and discretionary
vehicle idling contributes significantly to local-scale poor air
quality. This study introduces a novel approach to traditional
static (unchanging) anti-idling signage. Here, we demonstrate
a system, called SmartAir, that provides dynamic social-norm
messages to drivers coupled with information about idling status
or vehicle emissions in the area. A machine learning algorithm
with audio and video inputs determines vehicle idling status.
Vehicle emissions are measured using a suite of low-cost air
quality nodes. In this study, we show that the SmartAir system
reduces idling time by 28.0% and local CO, concentrations by
29.5% compared with background.

Index Terms—Anti-idling, automated vehicle idling detection,
dynamic feedback, IoT, low-cost vehicle emission monitoring,
sensor network, smart cities, social-norm messaging.

I. INTRODUCTION

N THE United States, transportation is one of the greatest
sources of air pollution [1], and poor air quality negatively
affects human health and healthcare costs [2], [3]. Vehicle
pollution can negatively impact various medical conditions,
from cognitive function in children [4] to lung and respiratory
function in adults and children [5], [6], [7]. In addition,
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greenhouse gases are emitted during engine idling, with 30
million tons of CO, generated from personal vehicle idling
alone [8].

Individual choices can significantly affect community- and
individual-level air quality. As the urban population grows,
behavior patterns become increasingly important. Locations
where idling vehicles congregate, such as schools and hospital
drop-off and pickup zones, are prime examples of where indi-
vidual choices can dramatically affect hyperlocal air quality
[9]. Entering these zones means passing through microclimates
of elevated pollution, including PM, s (particles smaller than
2.5-um diameter), carbon monoxide (CO), carbon dioxide
(CO,), volatile organic compounds (VOCs), ozone (O3), and
oxides of nitrogen (NO,) [6], [10]. Children and individuals
in wheelchairs are particularly vulnerable to vehicle exhaust
because of their breathing height; they can experience up to
60% higher levels of pollution (PM, 5) compared with standing
adults [7], [11].

Behavior change is a promising strategy to reduce idling
[12], [13]. However, anti-idling signage and education have,
at best, a mixed record of success [9], [14], [15], [16],
[17]. A different approach—dynamic feedback with digital
speed displays—effectively influences driver behavior (reduces
speeding) and reduces traffic accidents [18], [19], [20], [21].
Long-term evaluations indicate that digital speed displays are
effective for as long as they are in place [22], [23]. The
theoretical basis for the efficacy of dynamic speed displays is
that public displays of a social-norm violation (i.e., speeding)
could be reputationally harmful [24], [25]. Those currently, or
about to, violate this norm often reduce their speed to avoid
these reputational consequences (e.g., verbal confrontation,
gossip, and social ostracization [26], [27], [28], [29], [30]).
Mahmoudi et al. [31] reported that when drivers read an
injunctive social-norm message hypothetically presented in a
drop-off/pickup zone at a school, the duration of their intent-
to-idle significantly decreases. Adding an image of an idling
vehicle, exhaust, and a child further reduces idling by 41.9%.

IoT-based low-cost air quality sensor networks have
become an increasingly popular method for understanding
neighborhood-scale differences in air quality, wildfire smoke
plumes, indoor air quality, and individual pollution exposure
[32], [33], [34], [35], [36], [37], [38], [39]. Fewer studies
have applied these low-cost sensor networks to mobile emis-
sions [40], [41]. Even fewer studies have used IoT sensors
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to influence driver behavior. A notable exception is Far-
rag et al. [42], who developed an IoT-based vehicle emission
monitoring system to notify drivers when tailpipe emissions
exceed acceptable levels, although they did not report the
system’s impact on vehicle emissions or a driver’s decision
to repair the vehicle.

The goal of this project is to evaluate the effects of the
social-norm approach on idling behavior by using an loT-based
dynamic message to communicate near real-time information
about idling vehicles and hyperlocal air quality. This dynamic
feedback system is called the SmartAir System.

II. BACKGROUND

Anti-idling campaigns typically rely on static signage, let-
ters, fact sheets, and education [9], [43], [44], [45]. Two
studies, Mendoza et al. [44] and Ryan et al. [9], found
anti-idling campaigns based on the EPA’s Idle-Free Schools
Toolkit at elementary schools. Mendoza et al. [44] showed
an 11% reduction in idling vehicles obtained from vehicle
counts precampaign and postcampaign. Ryan et al. [9] found a
75.9% decrease in PM, 5 concentration and a 62.5% decrease
in elemental carbon concentration, measured with Harvard-
type PM, s impactor.

Sharma et al. [43] showed a 14% reduction in estimated CO,
emissions after a 40-day awareness campaign at signalized
intersections in Delhi (from 9357 CO, equivalent tons/day to
7976 tons/day). The anti-idling campaign by Rumchev et al.
[45] shows a decreased number of idling vehicles in eight
out of ten schools using onsite signage, newsletters, and fact
sheets. Of particular interest, Abrams et al. [46] demonstrated
the effectiveness of social-norm persuasive messaging on
idling, reporting a 42% increase in the number of drivers
who turned off their engines in response to anti-idling signage
posted near a railway crossing in U.K., compared with the
baseline.

To the best of the authors’ knowledge, aside from the
vehicle idling detection algorithm employed in this study
[47], only one other study by Bastan et al. [48] reported the
automatic detection of idling vehicles, and they used deep
neural networks and infrared imaging.

ITI. SMARTAIR SYSTEM
This section discusses the components of the SmartAir
system and how they interact. Section IV, provides information
about the field deployment.

A. Overall System Structure

Fig. 1 shows the structure of the SmartAir system, which
integrates audio, video, and air quality information to provide
near real-time updates about either vehicle idling status or air
quality levels. This information is displayed as a message and
accompanying image on large outdoor monitors that drivers in
the target area can view (messages discussed in Section [V-B).

B. Server

A desktop computer (Windows OS) and a router (TP-Link
Archer C7 AC1750) are configured to establish a standalone
wireless network. The Mosquitto broker for Windows facil-
itates MQTT communication between the air quality sensor
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Fig. 1. Overview of the SmartAir System.
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Fig. 2. Overview of the hospital deployment site drop-off/pickup zone. About
five and six vehicles could fit end-to-end in the sampling area. The driving
lane is two vehicles wide.

nodes and the computer. Multithreaded Python programs man-
age network operations, MQTT data handling, web server
functionality, and the machine learning-based idle detection
algorithm. In addition, the system saves all collected data on
the computer’s disk for further analysis. This setup will be
referred to as the server throughout the rest of this article.

C. Audio Nodes and Video Monitor

We utilize six off-the-shelf microphones (three sets of
Rode GO II Dual Channel Wireless Systems, with each set
comprising one receiver and two transmitters) and a webcam
(EMEET 1080P) for audio and video acquisition (see Fig. 2).
Each transmitter captures audio signals and transmits them
wirelessly to the receiver. The receiver, connected to the server
via a USB cable, converts the incoming audio signals to a
digital format and transfers them to the computer. The webcam
is connected to the computer using a USB repeater cable,
which is continuously charged during operation to prevent
lag. The camera is set to 25 f/s (40 ms for each new frame),
and the audio and video transmission times are 5 and 15 ms,
respectively. To minimize audio and video loss in case of
system interruptions, we save the recordings every hour and
start a new recording. This process results in a recording gap
that lasts on average 2 min every hour.

D. Idle Detection

We employ a deep learning algorithm that processes audio,
video, and user inputs to detect idling vehicles, as detailed in
[47]. This algorithm identifies stationary vehicles that produce
sound and operates in three distinct stages. In the first stage,
our motion-detection model predicts a bounding box and
motion status of each vehicle in the scene. In the second
stage, for each stationary vehicle, the algorithm identifies
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the nearest microphone using microphone pixel coordinates
(provided manually by the user at the beginning of each day)
along with the predicted bounding boxes. It then retrieves
the corresponding audio signal from the nearest microphone.
In the third stage, an audio classifier analyzes the retrieved
audio and determines whether it detects engine noise. Next, the
system consolidates all information, generates vehicle idling
status predictions, and writes the results to an output file at
1-s intervals for the display module (see Section III-F). The
algorithm requires 10 ms/frame. Therefore, each vehicle idling
status prediction is at most 65 ms (55 ms for the audio and
video acquisition and 10 ms for the algorithm).

To address challenging scenarios such as overlapping vehi-
cles, background noise, and moving cars—beyond the simple
case of a single vehicle—Li et al. [47] proposed a machine
learning framework that incorporates four key techniques.

1) Unidirectional Microphones: The system employs uni-
directional microphones, which capture sound primarily
from a specific direction while attenuating signals from
other directions, thereby reducing background noise.

2) Nearest Microphone Matching: For each static vehicle,
the system identifies the nearest microphone. Combined
with large intermicrophone spacing and the directional
sensitivity of the microphones, this allows the system to
focus on the acoustic signal of the target vehicle.

3) Contrastive Audio Representation Learning: The audio
classifier is trained using supervised contrastive learning
to construct a latent space where sounds of the same
category cluster together while dissimilar sounds are
pushed apart. This enables the model to better distin-
guish between different types of car engine sounds and
unrelated background sounds (e.g., human speech).

4) Prediction Label Smoothing: During deployment, the
system checks all predictions in the last second and
chooses the one that appears most frequently, helping
to smooth out occasional misclassifications.

Together, these four components along with the simple overall
idle status message for the display, make the system relatively
robust in complex multivehicle environments.

E. Air Quality Node

The SmartAir system includes eight air quality nodes,
with seven sampling nodes and one background node (see
Fig. 2). Each node employs an ESP32 microcontroller. It is
USB-powered and uses Wi-Fi to connect to the server. Each
node contains the following measurements: temperature and
humidity (Texas Instruments HDC1080), PM,s (Plantower
PMS3003), CO, (Senseair K30 FR), CO (Alphasense CO-
B4), NO (Alphasense NO-B4), NO, (Alphasense NO2-B43F),
and tVOC (Alphasense PID-AH). Sensor measurements are
collected at 1-s intervals, saved to an onboard SD card,
and published to the MQTT broker. The published messages
average 700 bytes and require approximately 5 ms to transmit
from publisher to subscriber using the MQTT broker with
quality of service set to O (the fastest MQTT setting). The
server saves messages received from the air quality sensor
nodes as JSON files in a local data directory (700-byte JSON
messages write to the directory in less than 1 ms).

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 23, 1 DECEMBER 2025

Radio frequency interference between the microphones and
the air quality nodes caused frequent disconnections of the
air quality nodes when operated simultaneously. Therefore,
we developed two separate dynamic messages, one based on
the idle status and the other on air quality measurements
(see Section IV-B). The SD card on the sampling air quality
nodes stores sensor measurements on days when the idle status
message is operating. The background air quality node always
stores measurements on the SD card, since the distance to
the server prohibits wireless transmission of the measure-
ments. Otherwise, the computer processes incoming sensor
measurements and uses the CO, sensor measurement as a
proxy for vehicle emissions. CO, measurements tend to be
the most consistent indicator of vehicle emissions [49]. The
maximum CQO, measurement from the sensors is scaled to
a value between 0 and 100 based on a concentration range
from preliminary field tests (380—440-ppm uncorrected CO,
concentration, note: K30 FR measurements are biased low
and corrections are applied postdeployment), with anything
less than or greater than the range mapping to 0 and 100,
respectively. The scaled CO, is written to an output file
available to the display module (see Section III-F) at 1-s
intervals (Python processing and file writing takes less than
1 ms).

This article only presents CO, measurements due to space
limitations and because CO, is a key indicator of idling
emissions [49]. A total of 12 CO, sensors were calibrated
in the laboratory with a concentration-only linear regression
compared with a TSI Q-Track 7575 with probe 982, and they
exhibited low sensor-to-sensor variability, with a coefficient of
variation (CV) of 2.49% in the slopes. This CV is substantially
lower than the EPA’s <30% CV recommendation for low-cost
sensors [50], [51]. In addition, CO, sensor measurements are
corrected using a multiple linear regression model developed
from laboratory experiments in an environmental chamber
controlling concentration, temperature, and relative humidity.
A follow-up publication will report the sensor laboratory per-
formance, correction factors, and complete field deployment
air quality results. It is worth noting that this article focuses
on relative changes in air quality metrics rather than absolute
concentrations (see Section IV-C).

F. Display Module

Two Raspberry Pi devices (Raspberry Pi 4 Model B) with
Chromium browsers serve as clients for the web server. Each
Raspberry Pi is connected to a 55-in LG outdoor digital display
(LG 55XS4J-B) and uses Wi-Fi to link to the server. Upon
start-up, a bash script launches the browser, automatically
directing it to an index HTML file hosted on the server. The
index file redirects requests to the appropriate daily message
HTML file. Section IV-A details each day and message type:
control, dynamic idle status, and dynamic vehicle emission
meter. Section I'V-B contains details on message development.
Messages are implemented using HTML, CSS, and JavaScript.

A 7-s loop between messages was selected to allow drivers
reading at a fifth grade level or above [52] to read the mes-
sages while navigating through traffic in the drop-off/pickup
zone. The most recent idle status prediction or scaled CO,
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TABLE I
DEPLOYMENT DATES, MESSAGE, AND SUMMARY INFORMATION

Date Day of Week Message Ny'?2 N3 ot min)! ¢ty (min)* ¢ min)! Thae B’ Tavg F’  RHavg (%)
28-Jul-23 Friday Control 74 75 206.8 123.5 86.0 102 87 23
1-Aug-23 Tuesday Control 69 60 233.6 195.7 73.5 91 81 42
2-Aug-23 Wednesday Idle Status 66 67 202.3 170.3 47.6 78 71 84
3-Aug-23 Thursday Vehicle Emission Meter 63 75 226.0 176.3 56.8 83 73 74
4-Aug-23 Friday Control 60 50 241.6 107.0 60.8 86 74 54
7-Aug-23 Monday Idle Status 58 53 243.5 129.0 343 88 71 41
8-Aug-23 Tuesday Vehicle Emission Meter 67 62 243.5 183.6 334 82 73 43
9-Aug-23 ‘Wednesday Control 80 48 243.5 172.6 53.0 88 76 34
10-Aug-23 Thursday Vehicle Emission Meter 61 45 268.3 190.5 45.5 94 83 29
11-Aug-23 Friday Idle Status 64 82 2423 159.9 65.2 93 83 38
14-Aug-23 Monday Control 68 71 243.0 153.9 93.4 95 80 32
15-Aug-23 Tuesday Vehicle Emission Meter 78 64 243.7 151.2 64.7 97 85 33
16-Aug-23 Wednesday Idle Status 71 74 243.4 172.6 57.0 96 84 39
17-Aug-23 Thursday Idle Status 96 113 233.2 181.6 70.1 98 86 47
18-Aug-23 Friday Vehicle Emission Meter 81 66 242.7 158.1 66.8 94 85 40

Where Ny is the number of vehicles, Ny is the number of idling events, ¢ is the total sampling time, ¢y, is the time with vehicles in the drop-off/pick-up zone,
tr is the time with idling vehicles in the drop-off/pick-up zone, Tinqo is the maximum daily temperature, T4y 4 is the average daily temperature, and RHgyg is the

average daily relative humidity.
'Based on notes taken continuously by onsite personnel.

2 Any vehicle that entered the drop-off/pick-up zone (passed through or stopped).

3 A single vehicle can have multiple idling events. Therefore, the number of idling events can be greater than the number of vehicles.
“Based on the vehicles detected in the frame from the video model machine learning algorithm.
STemperature and relative humidity from the Salt Lake City International Airport, UT US WBAN:24127 (ICAO:KSLC) station [54].

concentration is used for the update since these values are
generated faster than the message loop interval. Caching is
disabled to support frequent updates. Web server transmission
and JavaScript processing complete in about 10 ms. The total
latency from data generation to display is at most 75 ms (65 ms
for idle status predictions or 7 ms for scaled CO, values, plus
10 ms for message generation) which is far less than the 7-s
loop time.

IV. FIELD DEPLOYMENT
A. Site Description and Experimental Design

We evaluate the SmartAir System at Intermountain Health
LDS Hospital in Salt Lake City, UT, USA (40.77860,
—111.88032). The system is installed at the hospital’s main
entrance, which features a U-shaped drop-off/pickup zone
beneath a 9.1-m-high ceiling. Fig. 2 depicts the hospital site
and identifies the locations of the SmartAir System compo-
nents.

To ensure stable and clear microphone signal acquisition,
the six microphone transmitters are placed 2-3 m from the
curb and spaced 2-m apart along the wall adjacent to drop-
off/pickup zone (see Fig. 2). The inverse-square law predicts a
10-dB drop in engine sound pressure level when microphones
are placed 10 m from an on-road vehicle, pushing the signal
close to ambient levels [53]. For video recording, we mount a
webcam on top of a 6.1-m tripod positioned to provide a full
view of the sampling area (see Fig. 2).

Like the microphones, we deploy seven air quality nodes
2-3 m from the curb, spaced about 1.7 m apart in the drop-
off/pickup zone (see Fig. 2). The background air quality
node is placed outside the drop-oft/pickup zone approximately
15.2 m from any potential vehicle idling.

This evaluation occurred on 15 weekdays, five days for
each message, with approximately 4 h of sampling between

approximately 11 A.M. and 5 P.M. local time. Table I lists the
deployment dates, message type, meteorological data, number
of vehicles observed each day and idling time. The three
message types are rotated to capture different days of the week
and weather conditions.

B. Messages

Section III-F discusses the workflow for displaying the
three messages. Fig. 3 shows each message with a wireframe
diagram depicting how the messages are updated. The messag-
ing was co-developed with hospital personnel. The dynamic
messages [see Fig. 3(b) and (c)] have two parts. The first part
is the social-norm statement identifying the desired cultural
or behavioral norm [55]. The second part is the information
indicating how the individuals are or are not adhering to the
norm with the intent of encouraging behavioral change [56].

Predeployment surveys indicated that simpler messages had
a greater influence on driver behavior [31]. Therefore, the
second part of the dynamic messages is intentionally simple,
and shows either the overall idling status in the drop-off/pickup
zone [see Fig. 3(b)] or a slider for vehicle emissions [see
Fig. 3(c)] measured in the drop-off/pickup zone.

C. Data Analysis

We correct the CO, measurements (see Section III-E) and
conduct initial screening, which entails removing measure-
ments for a sensor if: the raw signal-to-noise ratio is less
than 2 dB [57], [58], they occur within 5 min of cycling the
device’s power, or they coincide with abnormal periods noted
in the field logs. These abnormal periods include: smoking in
the sampling area, sprinklers operating, or note takers being
overwhelmed or distracted, making field notes unreliable.

Next, the sensor concentration measurements are divided
into two datasets: one when no vehicles are present in the drop-
off/pickup zone and one when vehicles are present. We use
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Fig. 3. (a) Static control message. (b) Dynamic social norm plus idling status
message. The wireframe shows the transition method and transition times
between the first part of the message, the social-norm statement, and the
second part of the message, about idling status in the drop-off/pickup zone,
provided by a machine learning algorithm. (c¢) Dynamic social norm plus
vehicle emission meter message. The wireframe shows the transition method
and transition times between the first part of the message, the social-norm
statement, and the second part, about vehicle emissions detected in the drop-
off/pickup zone. A scaled CO, concentration serves as the proxy for vehicle
emissions (see Section III-E).

the no-vehicles-detected dataset to calculate a rolling hourly
background CO, concentration for each device. We perform a
second screening on the vehicles detected dataset by dropping
any measurements if the background calculation included
fewer than 15 min of measurements (i.e., less than 25% of the
hour). We also remove outliers using the z-score method [59],
where we define an outlier as any measurement or background
value with a z-score greater than 10. This threshold accounts
for the expected variability in measurements due to vehicle
emissions.

The rolling background concentration (from the no-
vehicles-detected dataset) is subtracted from the measured
concentration for each sensor, producing a concentration above
background value in the vehicles-detected dataset. This value

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 23, 1 DECEMBER 2025

allows for comparison of the messages while minimizing
the impacts of intrasensor variability, changes in ambient
concentrations, and meteorological conditions.

Finally, driver idling durations and concentrations above
background are separated by message type. These data are
not normally distributed (idling duration Shapiro—Wilk

test, p < 0.0001; concentrations above background
Anderson—-Darling test, p < 0.0001), and the concentrations
above background exhibit unequal variances (F-test,

p < 0.0001). Therefore, a Kruskal-Wallis test is used
to evaluate whether idling durations or concentrations
above background differed by message type. When the
Kruskal-Wallis test indicated a significant effect, we conduct
post hoc pairwise comparisons using Dunn’s test with
Bonferroni correction for multiple testing. We consider results
statistically significant at p < 0.05.

V. RESULTS AND DISCUSSION

The supplementary material includes a video of the Smar-
tAir system in operation at the hospital drop-off/pickup zone,
showcasing the dynamic idle status message. The video is of
the author’s personal vehicle, rather than a patient’s.

A. Idle Detection Algorithm Performance

The audio and video recording coverage ratio was 90.3%
throughout the deployment. Table II provides the idle detection
algorithm performance for the no-idling and idling labels.
True positive rate (TPR) is the ratio of correctly classified
positive labels to all positive labels, using field notes as
“ground truth.” The average no-idling and idling label TPRs
are 96.6% and 78.3%, respectively. From tests conducted prior
to the full deployment, Li et al. [47] reported no-idling versus
idling detection average precision (AP) as 91.1% and 71.0%,
respectively. The AP metrics are computed based on per-
vehicle aggregated results, and an AP above 70% generally
indicates that the model has a reasonable ability to detect
whether each vehicle is idling.

B. Driver Behavior Impacts

The analyses reveal a significant effect of message type
(p < 0.0001) on idling duration. Fig. 4 shows that the pro-
portion of time in the drop-off/pickup zone that drivers idle is
significantly lower (relative to the control message) for both
the social-norm plus idling (p = 0.002) and social norm plus
vehicle emission meter messages (p < 0.0001). In addition,
the proportion of idling time for the social norm plus vehicle
emission meter message is significantly lower than the social
norm plus idling message (p = 0.029). This study finds an
average 28.0% reduction in the proportion of time spent idling
when using the dynamic messages compared with the control
message (23.3% and 32.7% for the idling and vehicle emission
meter messages compared with the control, respectively).

These findings are consistent with the focus theory of
normative conduct [55], which holds that drawing attention
to expected norms of conduct can change behavior in the
direction of the norm. Driven by this theory, the SmartAir
display provided a clear injunctive social-norm message—air
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TABLE I
IDLE DETECTION ALGORITHM FIELD PERFORMANCE

Date Day of Week  Message! Deployment Time with Field Validation = No-Idling Label TPR  Idling Label TPR
1-Aug-23 Tuesday Control 99.9% 96.1% 77.0%
2-Aug-23 Wednesday Idle Status 96.7% 94.9% 68.0%
4-Aug-23 Friday Control 98.8% 98.1% 91.0%
7-Aug-23 Monday Idle Status 96.6% 98.2% 77.8%
9-Aug-23 Wednesday Control 96.7% 97.7% 68.8%
11-Aug-23 Friday Idle Status 98.8% 97.1% 77.1%
14-Aug-23 Monday Control 98.4% 97.2% 80.9%
16-Aug-23 Wednesday Idle Status 95.0% 94.3% 83.3%
17-Aug-23 Thursday Idle Status 92.1% 95.5% 80.7%

'We run the idle detection algorithm on control message days (except Friday, July 28th) to calculate algorithm field performance even

though the control message does not use the output.
TPR - true positive rate.
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for the three messages (control, social norm plus idling status, and social
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#H#Ep < 0.0001.

pollution is bad for patient health, please avoid idling. The
display may have prompted other drivers to observe social-
norm violations and to expect that others were monitoring their
idling behavior. This was expected to reduce idling as drivers
sought to avoid embarrassment or other negative interpersonal
consequences that might occur because of their norm-violating
behavior [28], [60]. Our findings are consistent with other
studies showing the efficacy of social-norm messaging on
driver intent-to-idle [31] and actual idling behavior [46].

C. Air Quality Impacts

The air quality nodes had an average daily data complete-
ness of 99.1%, with values ranging from 95.3% to 99.9%.
Fig. 5 shows the comparison of the CO, levels for the
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Fig. 5. Average CO concentration above background for each message

type (control, social norm plus idling status, and social norm plus vehicle
emission meter). The background is device specific (see Section IV-C). Error
bars indicate the 95% confidence interval. Note: *p <0.01, **p <0.001, and
#HEEp < 0.0001.

control message to those for social norm plus idling status
and social norm plus vehicle emission messages. The CO,
concentration above background shows a decrease of 4.7 ppm
(21.1%, p <0.001) for the social norm plus idle status
message compared with the control message and a decrease
of 8.4 ppm (38.0%, p < 0.0001) for the social norm plus
vehicle emission meter message compared with the control
message. The average concentration decrease for the dynamic
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messages compared with the control message is 6.5 ppm
(29.5% decrease).

The authors did not identify previous anti-idling studies that
directly measured CO, concentration. An anti-idling campaign
in Canada shows a 33% reduction in estimated CO, emissions
using the NRCan Gas Emission Calculation Tool [61]. While
Sharma et al. [43] showed a 14% reduction in estimated CO,
emissions, calculated from estimated reductions in fuel con-
sumption and emission factors, after an awareness campaign
at signalized intersections in Delhi.

D. Limitations and Future Work

This study has several limitations. The field deployment
took place during the summer. We expect seasonality, par-
ticularly temperature, to impact human behavior [13], and
low-cost sensors are sensitive to ambient temperature and
relative humidity changes [62]. Vehicle efficiency, and con-
sequently CO, emissions, also change with temperature and
vehicle load (air conditioning) [63]. Using low-cost sensors
increases the uncertainty of the air quality measurements [62]
but provides benefits, including small size, portability, quiet
operation, scalability, and cost. We neither measure wind speed
or direction for air quality analysis nor do we analyze plume
dissipation.

Additional limitations relate to the physical deployment
location. The hospital site features a partially covered area
that protects equipment from weather and wind and improves
display visibility by providing shade. Deploying this system in
an unprotected area requires hardening of the equipment for
weather and potentially brighter displays. In addition, air qual-
ity measurements are impacted by differing plume dissipation
characteristics, such as in an open area. This study was limited
by its 15-day duration and the deployment of equipment at
a single location, which restricts the generalizability of the
results.

After the deployment was completed, the authors identified
a design issue with the air quality node printed circuit board.
The board was supposed to have two voltage buses, one 3.5 V
and one 5 V, but a short between the buses resulted in a single
approximately 4-V bus. The Senseair K30 FR CO, sensor calls
for a 4.5-14 VDC supply [64]. However, Senseair technical
support suggests that if the sensor provided a signal, it had
sufficient power. In addition, we ran the concentration-only
laboratory test again for some K30 FR sensors (see Section
III-E) using the 4-V printed circuit boards and found <20%
variation in the slopes compared with the prior tests using an
Arduino with a 5-V supply. Because this study evaluates the
relative increase or decrease in a sensor’s signal, the results
are still valuable indicators of vehicle emissions.

This pilot demonstration included privacy protections: IRB
approval (Intermountain Healthcare IRB 1051680 and Uni-
versity of Utah IRB_00141290), training of faculty and staff
on human subjects research, and positioning the camera in a
manner that made it difficult to read the license plate. However,
if this type of system were deployed outside of a research
setting, additional privacy measures would be needed (license
plate masking and speech filtering from audio [65]).

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 23, 1 DECEMBER 2025

Future work could include fixing the voltage buses on
air quality node printed circuit boards, hardening the system
for more extreme weather deployments, and engineering the
network communication protocols to avoid radio frequency
interference between the microphones and air quality nodes
(shielding, filtering, or changing frequencies). We aim to
investigate a machine learning algorithm that uses all available
air quality measurements, particularly since CO, NO, NO,,
and VOC are more relevant to health impacts, to support idling
status predictions. After these improvements, we could deploy
the system in other areas with increased idling (schools).
In addition, a comparison between the vehicle emissions
measurements and a plume dissipation model (e.g. Gaussian
plume dispersion model) would provide information to help
optimize the sensor placement.

VI. CONCLUSION

In this study, we effectively demonstrate a novel system
that can detect idling vehicles, measure vehicle emission
impact on local air quality, and provide real-time feedback
to drivers about idling behavior and air quality in the area.
In addition, we show that this system is effective at reducing
idling behavior, with an average 28.0% reduction in idling
time, and thus, this reduction in idling has a measurable impact
on local vehicle emissions, with a 29.5% decrease in CO,
emissions compared with background. This novel approach
to combat discretionary vehicle idling can supplement current
anti-idling strategies.
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