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Abstract

Efficient workload forecasting is a key enabler of modern AIOps
(Artificial Intelligence for IT Operations), supporting proactive and
autonomous resource management across the computing contin-
uum, from edge environments to large-scale cloud infrastructures.
In this paper, we propose a Temporal Transformer architecture for
CPU utilization prediction, designed to capture both short-term fluc-
tuations and long-range temporal dependencies in workload dynam-
ics. The model is first pretrained on a large-scale Microsoft Azure
VM dataset and subsequently fine-tuned on the Alibaba container
dataset, enabling effective transfer learning across heterogeneous
virtualization environments. Experimental results demonstrate that
the proposed approach achieves high predictive accuracy while
maintaining a compact model size and inference times compatible
with real-time operation. Qualitative analyses further highlight the
model’s ability to reproduce workload patterns with high fidelity.
These findings indicate that the proposed Temporal Transformer
constitutes a lightweight and accurate forecasting component for
next-generation AIOps pipelines, suitable for deployment across
both cloud and edge intelligence scenarios.

CCS Concepts

« Computing methodologies — Neural networks; Supervised
learning; - Computer systems organization — Cloud comput-
ing; Neural networks.
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1 Introduction

The continuous growth and accelerated deployment of cloud, fog,
and edge infrastructures have brought the computing continuum
paradigm into the spotlight. This paradigm proposes to unify di-
verse resources, from large cloud data centers and intermediate
fog nodes to geo-distributed edge nodes and billions of IoT devices,
into a cohesive, end-to-end infrastructure. By leveraging heteroge-
neous and dynamically shared resources, the continuum enables
latency-sensitive applications, real-time analytics, and pervasive
artificial intelligence [6].

Efficient resource management across heterogeneous and dy-
namic computing environments remains a major technical chal-
lenge. The variability of workloads, especially in mission-critical
contexts such as disaster response or real-time industrial control,
demands intelligent and adaptive operational strategies. In this re-
gard, the AIOps (Artificial Intelligence for IT Operations) paradigm
has emerged as a key enabler, leveraging data-driven methods to
automate decision-making, support self-adaptation, and improve
predictive control in distributed infrastructures. Accurate workload
forecasting is central to this vision, as it underpins the allocation,
provisioning, and dynamic reconfiguration of resources based on
neighboring capacities and connectivity states. Robust prediction
mechanisms thus form the backbone of AIOps systems, enabling
proactive offloading, optimized scheduling, and sustained perfor-
mance and energy efficiency at scale [9, 12, 18].

Recent advances in machine learning have improved workload
forecasting, particularly in cloud environments where Virtual Ma-
chines (VMs) are predominant. Yet, with the growing adoption of
containerization, offering greater elasticity but introducing higher
volatility, resource allocation must adapt to finer-grained and more
dynamic execution environments. Bridging predictive models for
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CPU utilization developed for VMs with the requirements of container-

based systems is a key enabler for AIOps-driven resource orches-
tration within the computing continuum. Traditional time-series
methods often struggle to generalize across these heterogeneous
environments and to capture both short-term variability and long-
range dependencies, limiting their applicability in real-world oper-
ational pipelines.

To address these limitations, we investigate the use of Temporal
Transformer architectures. Transformers, originally proposed in the
natural language processing domain, have recently demonstrated
strong performance in time-series forecasting due to their ability
to model complex temporal dependencies without the constraints
of recurrent architectures [19].

In this paper, we propose a Temporal Transformer architecture
for CPU forecasting designed specifically for the computing con-
tinuum and aligned with the objectives of AIOps. We investigate
the critical aspect of knowledge transfer by adapting predictive
models trained on VM workload traces to containerized environ-
ments. Evaluation is performed on real-world datasets, utilizing a
pre-training phase on Microsoft Azure VM traces and fine-tuning
on Alibaba container traces. Our core design goals are to achieve:
accurate workload prediction for short-term forecasts, robustness
under novel workload conditions, and low-latency, lightweight in-
ference suitable for both cloud and resource-constrained edge/fog
scenarios.

The remainder of the paper is organized as follows. Section 2
introduces related work on resource management, workload fore-
casting, and AIOps frameworks. Section 3 describes the selected
datasets, formulates the problem, and presents the proposed model.
The experimental setup, metrics, and results are discussed in Sec-
tion 4. Finally, Section 5 concludes the paper and outlines directions
for future work.

2 Related Work

Resource management plays an important role in optimizing large
and micro-data centers [7, 8]. In this regard, we are interested in the
role of CPU utilization for the prediction of the workload. The state
of the art is an exploration of the literature mixing the keywords
CPU, usage, utilization, prediction and forecasting. Generally speak-
ing, the most popular models adopted by the scientific communities
are the ARIMA and LSTM [14, 16] models. Not many solutions
adopt Transformers to solve the task. In the following, we reference
the most relevant ones.

Duggan et al. [5] proposed a study which focused on the com-
parison between prediction models that were one and many steps
ahead. The model was a RNN with a Back-Propagation-Through-
Time (BPTT) algorithm. PlanetLab was the dataset, out of 800 cloud
hosts machines simulated with the CloudSim simulator. CPU utiliza-
tion values were measured every 5 minutes. The model converges
to a good solution in a short time, outperforming the compared
models (e.g., Random Walk, Moving Avg, Backpropagation). The
analysis on multi-steps highlights a slow degradation of the model
while the steps increase. This means that the model may be used to
train more steps ahead (e.g., 20, 30 minutes), but this is inconvenient
to extend the time.
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Janardhanan et al. [11] investigated CPU workload forecasting
by comparing the LSTM and ARIMA models. Their study used
Google Cluster Data Trace, which includes resource monitoring
for 29 consecutive days. The dataset is over 300 GB and consists of
scheduling information of over 12000 data center machines. Data
for a single machine were extracted, creating a new dataset of
about 8300 readings. The ARIMA model correctly predicts near-
term predictions, but failed to predict long-term values. The LSTM
forecasted both near-term and long-term values better. The paper
lacked reproducibility, such as input shape and size, accurate details
on the LSTM architecture, or any source link for codebase and
dataset.

Mason et al. [13] investigated the problem of CPU prediction for
VMs by applying bioinspired Al methods to optimize a Recurrent
Neural Network (RNN). The Particle Swarm Optimization (PSO),
the Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) and the Differential Evolution (DE) were used as optimization
algorithms for fine tuning the RNN model. The dataset was the
PlanetLab. It includes CPU utilization samples measured every 5
minutes in a 24h day.

Bauer et al. [1] introduced UtilML, a resource prediction system
based on LSTM for the computing continuum. The Rectified Linear
Unit (ReLU) activation function was replaced with the LeakyReLU,
an extension that is beneficial when there is a large amount of
negative values. Batch normalization was proposed to mitigate
internal covariate shifts. The dataset was the Alibaba Cloud GPU
trace. The model was compared with baseline variants considering
RMSE, MAPE and sMAPE.

Daraghmeh et al. [4] proposed a multilevel learning model for
CPU usage prediction. The architecture involves three main phases:
Anomaly Detection using an Isolation Forest to filter outliers, Data
Clustering via k-means to identify recurrent CPU usage patterns,
and Ensemble Learning which combines the best four regression
models using stacking or voting regression methods. The input
time window was fixed at 60 minutes with 5-minute samples. The
Gradient Boosting Regressor demonstrated the highest performance
across R2, MAE, and MSE metrics.

Wang et al. [18] proposed an AlOps-oriented forecasting frame-
work combining statistical, machine learning, and deep learning
models. After outlier removal using the 4-sigma rule and signal
smoothing with a Butterworth filter, predictions from methods such
as SARIMAX, Prophet, Holt-Winters, XGBoost, and LSTM were
integrated through a metamodel. Among all, XGBoost achieved the
best accuracy across MAE, MSE, and MAPE metrics. 'm

Wang et al. [17] introduced ExtremoNet, a model for predicting
extreme CPU load conditions using time series data that include
CPU, memory, and network metrics. Outliers were detected with
an isolation forest, and a one-step-ahead regression was performed.
Features were selected via Pearson correlation, and the approach
was tested on the AliCloud container trace dataset. Evaluations
using MAE, MSE, and R? showed competitive results compared to
three baseline models.

Carnevale et al. [2] discussed a distributed solution based on the
federated learning paradigm. A bidirectional LSTM was developed
and distributed over a number of local zone clients. The weights
of the neural network were, therefore, aggregated on a regional
server, using the Federated Average aggregation algorithm. The
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methodology preserves data privacy and reduces latency by mov-
ing the computation to the edge of the network, where data are
generated. Performance analysis, in terms of R?, MSE, RMSE and
MAE, prove the quality of the methodology.

The discussed works cover a broad range of knowledge about
the prediction of CPU utilization. LSTM [15] was often used as a
reference model to predict one step ahead (e.g., 5 minutes). Only
the work [1] mentions the possibility of using such a model for
the computing continuum, but the dataset was trained on a GPU
trace dataset, which is typically, not the hardware architecture of
edge devices. We aim to build a compute continuum model, training
in the phases. During the first phase, the model is trained on the
Microsoft Azure Trace dataset to build a pretrained based on VMs.
During the second phase, the model is re-trained on the Alibaba
Trace dataset to build a finetuning based on containers.

3 Material and Methods

3.1 Dataset

Considering the target of this paper is building a model for the
Computing Continuum paradigm, that is, including cloud and edge
resources, we selected two datasets, one for each kind of resources.
Indeed, the cloud dataset is the Microsoft Azure Trace, while the
edge dataset is the Alibaba Cloud Trace.

Microsoft Azure Trace Dataset: The Microsoft Azure trace
dataset! was released in 2019 [3]. Dataset includes metrics from
more than 2,5 million VMs. The uncompressed dataset has a size
of 235 GiB divided into 198 files. VM CPU utilization was sam-
pled every 5 minutes for 30 consecutive days. The total of samples
recorded more than 100 million hours and almost 2 billion readings.
Dataset schema contains many attributes divided into multiple files
(e.g., deployment size, VM virtual core count bucket VM memory
bucket). However, we focus on the attributes reported in the table
1. Services deployed in the VMs are first-parties (internal services,
i.e., research, development, testing) and third-parties (costumers
services, i.e., web service, e-commerce). Services are balanced be-
tween Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS). Most of the VMs have a few virtual cores and no more than
4 GB.

metric description

Timestamp The time when the sample was collected
VM ID The unique identifier of the virtual machine
Minimum CPU  The minimum CPU sampled at that time

Maximum CPU  The maximum CPU sampled at that time
Average CPU The average CPU sampled at that time

Table 1: Features description of the Microsoft Azure Trace
Dataset

Alibaba Cloud Trace Dataset: The Alibaba Cloud Trace dataset?
was released in 2022 [20]. Dataset includes metrics from more than
40 thousand bare-metal nodes during 13 days, including more than
470 thousand containers for more than 28 thousand microservices.

!https://github.com/Azure/ AzurePublicDataset
Zhttps://github.com/alibaba/clusterdata
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The uncompressed dataset has a size of more than 2TB divided
into multiple files. The CPU utilization of the containers was sam-
pled every minute for 13 consecutive days. Data schema contains
many attributes divided into multiple files (e.g., bare-metal node
resources, container resources, microservice call rate and response
time). However, we focus on the attributes reported in the table 2.
There is no information about the type of services deployed in the
containers.

metric description

Timestamp The time when the sample was collected
Microservice ID  The unique identifier of the microservice
CPU Utilization Normalized CPU sampled at that time

Table 2: Features description of the Alibaba Cloud Trace
Dataset

3.2 Problem Definition

We consider a k-dimensional time-series with:
X = [x;,xgi,x;ii, xf] (1)
In the proposed approach, focused on CPU utilization, it includes
the CPU utilization value (x;). The size k of the input is 1.
The model uses historical observations (X;—p+1, ..., X¢) to esti-

mate CPU utilization X;4+1 at one or more next points in time ¢ + 1,
t+ 2 and t + 3. Therefore,

X1, Xp42, Xe43 = f(Xp-na1s 0 Xt) 2

where f is the relationship between the historical data and the
predicted CPU utilization. It represents the models that we propose
in the following. The time t represents the timestamp recorded
when the sample is read. This can vary according to the need of
the application. According to equation 1 and considering k = 1, the
equation 2 becomes:

[t ls el [xias] = F(x ] s [ ©

The choice of predicting a few step in the future is two-fold. On
the one hand, this is explained in [17]. Indeed, this avoids accumu-
lation of errors in the long-term forecast if it is present. Our choice
minimizes errors and guarantees the reliability of the forecasted
results. On the other hand, considering a t = 300s, it is enough
time to be informed about the future behavior of the infrastructure
resource, plan and act the migration from the source to a target
destination [10]. The choice is therefore confirmed by the literature.

3.3 Preprocessing

Both datasets contain cloud and edge CPU readings sampled, re-
spectively, every 5 and 1 minutes from different VMs and containers.
It is therefore required to extract the readings from one single VM
or container to create coherent sequences of samples.

We downloaded all 195 files from the Microsoft Azure Trace and
47 files from the Alibaba Cloud Trace. In both cases, we selected
the first file and randomly collected a set of 100 IDs. These are
the candidates for analysis. At this point, the remaining files were
opened to extract and add the readings of VMs and containers to
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Pandas DataFrames. The final dataset for a single VM has a size of
approximately 1 MB and 8600 readings, while for a single container
it has a size of approximately 110 KB and 1440 readings. The features
are the same as explained in Tables 1 and 2.

An additional challenge was represented by the different sam-
pling frequencies of the two datasets. Azure traces are natively
sampled every 300 s, while Alibaba traces are sampled every 60 s.
To align the two datasets and obtain comparable sequences, the Al-
ibaba container readings were aggregated by computing the mean
value over non-overlapping 300 s windows. This resampling step
produced a time grid coherent with Azure, but inevitably reduced
the number of available points by a factor of five, leading to infor-
mation loss in the Alibaba traces.

The values of the curves before and after the preprocessing phase
change frequently over time, with relevant spike-peak phenomena.
This indicates that the system was experiencing sudden increases
in resource demand and the running applications had irregular
behavior. The dataset shows different trends, pointing out the vari-
ability of user behavior with the deployed services. The dataset now
represents a good fit for testing the proposed approach, covering
the case when the services stress the VMs.

Min-Max normalized data were used for both training and eval-
uation in order to assess the quality of the learning process. The
dataset was partitioned into 70% for training, 15% for validation, and
the remaining 15% for testing. The splitting procedure is defined as
follows:

t = [rrainNJ, o=lraN|, g= max(l, Stp— 1)5

Train = [0, t),
Validation = [ min(t + g, N), min(t + g+0, N) ),
Test = [min(t +g+0, N), N).

where N is the total sequence length, ry,in and ry, are the
training and validation ratios, s is the input sequence length, p is
the prediction length, g is the applied gap, | x] denotes the floor
operator, t and v are the computed training and validation lengths.
A gap g was introduced in order to avoid information leakage from
future windows that could bias the training process.

3.4 Predictive Model

To address the problem of multi-step forecasting of CPU utilization,
we designed a Temporal Transformer architecture, illustrated in Fig-
ure 1. The model is specifically tailored to capture both short-term
fluctuations and long-range dependencies in workload dynamics,
such as variations in average CPU consumption.

The model input is a four-dimensional tensor:

Input c RBXTXNXF (4)

where B denotes the batch size, T the length of the input sequence
(e.g., the lookback window), N the number of VMs, and F the num-
ber of features, that is the average CPU utilization. In this work,
we set N = 100. Each univariate CPU usage value is first projected
into a dpyode] = 192-dimensional latent space through a linear trans-
formation, producing richer internal representations:

h c RBXTXNdeodel

De Novi et al.

n Temporal Layers

——— [ = )

—

Linear Projection (—» d_model=192)

' Dropout (5=0.15) + Resdual
VM Positional Embedding —_———
y LayerNomn J

Time Positional Embedding

d_modei=192)

Decoder
Linear — GELU — Dropout(0.15) — Linear

Output [B, pred_len, 100, 1] ‘

FeedForward (f_dim=256)
Linear — GELU — Linear

Figure 1: Architecture of the proposed temporal transformer
for CPU utilization forecasting.

This projection is initialized with Xavier uniform initialization to
stabilize training and facilitate convergence.

Two complementary embeddings are incorporated into the model:
i) the VM Embedding, which assigns a unique vector to each VM,
enabling the model to disambiguate between different machines and
capture VM-specific behavior; and ii) the Time Embedding, which
encodes the temporal position of each timestep, thereby compen-
sating for the permutation invariance of the attention mechanism.

The core of the model consists of three stacked temporal trans-
former layers. Each layer contains:

T

. ( OK )
Attention(Q, K, V) = softmax +M|V
dhead

where M is a causal mask that ensures that predictions at time ¢
cannot access future information. Each attention block employs
eight heads, with dpeaq = dmodel/8 = 24. The attention mechanism
is followed by a position-wise feed-forward network with hidden
dimension dg = 256 and a Gaussian Error Linear Unit (GELU)
activation, which expands and contracts the feature space to capture
complex non-linear patterns. Residual connections, dropout (p =
0.15), and layer normalization are applied throughout the network
to stabilize optimization and reduce overfitting.

Finally, a decoder maps the transformer outputs back to the orig-
inal feature space, yielding predictions with the following shape:

Output c RBxpred_leanxl (5)
which corresponds to the forecasted CPU utilization for each VM
at each future timestep.

Overall, the model comprises approximately 8.0 X 10° trainable
parameters, corresponding to a memory footprint of about 3.2 MB
in single-precision representation. This balance between expres-
siveness and efficiency makes the architecture suitable not only for
cloud applications but also for edge intelligence scenarios.

3.5 Training Phase

The training phase was conducted separately for each dataset. After
splitting the timeseries into training, validation, and test sets with
appropriate gaps, as previously discussed, the training set was nor-
malized using the min—-max scaler, fitted exclusively on the training
data to avoid information leakage. The same transformation was
then applied to the validation and test sets.
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The model was trained on the Microsoft Azure dataset using the
PyTorch framework with early stopping based on the validation loss
to prevent overfitting. The optimization process relied on the Adam
optimizer with a learning rate tuned to 0.001, and the loss function
considered was the Mean Squared Error (MSE). Each training run
involved multiple epochs until convergence, which often happened
around 256 epochs, with the validation set continuously monitored
to ensure generalization.

After training on the Microsoft Azure dataset, the model weights
were saved and subsequently reused in the transfer learning phase,
where fine-tuning was performed on the Alibaba dataset. This two-
step process allowed the model to take advantage of the knowledge
acquired from Azure while adapting to the characteristics of Al-
ibaba.

4 Results and Discussion

4.1 Environmental Setup

The experiments were executed on a dedicated VM provisioned
with 8 GB of RAM and powered by an AMD Ryzen 9 7950X proces-
sor with 16 cores, a high-performance CPU designed for parallel
workloads. For accelerated training and inference, the system was
equipped with an NVIDIA RTX 4090 Super GPU, featuring 24 GB
of dedicated VRAM.

The software stack was centered on Python 3 as programming
language, with the PyTorch deep learning framework serving as the
backbone for model implementation. PyTorch v2.6.0 was chosen for
its efficient memory management, flexibility for custom architecture
design, and strong integration with the CUDA framework. Other
modules used are Numpy v2.3.1 for the array management, Pandas
v2.3.2 for the .csv files processing, Matplotlib v3.10.0 for data
visualization and Scikit-learn v1.7.2 and Scipy v1.16.1 for metrics
calculations, such as R2, MSE, MAE, RMSE and confidence intervals
in inference time calculations.

4.2 Metrics

The quality of the methodology is expressed in terms of several key
metrics that evaluate accuracy, error magnitude, and operational
suitability. R? measures the proportion of the variance in the de-
pendent variable that is predictable from the independent variables,
providing an indication of the model’s overall accuracy. Error mag-
nitudes are quantified by the Mean Squared Error (MSE), which
measures the average of squared errors, emphasizing the impact
of larger prediction mistakes, and the Root Mean Squared Error
(RMSE), which provides the standard deviation of the prediction
errors in the same units as the target variable. The Mean Absolute
Error (MAE) offers a complementary measure by calculating the
average of the absolute errors, providing a linear assessment of the
model’s prediction accuracy. Finally, the operational characteristics
essential for deployment in constrained environments are assessed
using the Average inference time, which measures the time in sec-
onds required for making a prediction, and the Model size, which
quantifies the model’s memory footprint in MB.
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4.3 Results Discussion

The obtained results underline specific common trends across the
different experimental scenarios as follows: i) Azure, ii) Alibaba
and iii) Azure after Transfer Learning.

Experiments were setup with 6, 12 and 24 steps as lookback
window size. The accuracy metrics in Table 3 show that for all
the lookback window sizes considered, the R% score remains high
(above 0.76), with few slight decreases as the forecasting horizon
increases. This pattern is expected in multi-step forecasting, where
uncertainty naturally grows with longer horizons. Performance on
the Alibaba dataset is generally higher than on Azure, suggesting
either more regular behavior in the data or better generalization of
the model in that setting. Transfer learning from Azure to Alibaba
yields results that are comparable, and in some cases slightly bet-
ter, than direct training on Azure, showing the benefit of reusing
learned representations.

The MSE, MAE, and RMSE scores indicate stable behavior in
different scenarios. Performance does not deteriorate dramatically
when increasing the lookback from 6 to 24 steps, which suggests
that the architecture can effectively exploit longer input windows
without clear signs of overfitting.

As reported in Table 5, inference times remain low and consis-
tent. Using the Microsoft Azure dataset, predictions take about
0.6-0.8 seconds, with narrow confidence intervals, while using the
Alibaba dataset they are much faster than 0.04 seconds, likely due to
differences in dataset size or complexity. Transfer learning does not
add any noticeable overhead, keeping inference times essentially
unchanged. This is an important property for real-time or near
real-time applications, where fast response is essential.

The size of the model remains constant at 3.2MB in all lookback
windows and forecasting steps as shown in Table 4. This behavior is
expected because the underlying architecture does not change with
these settings. As a result, the observed differences in performance
are entirely due to the data dynamics rather than to variations in
the model complexity. The compact and fixed size of the model
also makes it suitable for deployment in environments with limited
memory resources, such as edge devices.

When it comes to qualitative analysis, referring to the Azure
dataset, Figure 2 clearly shows how the predicted curve closely
follows the testing values, often matching the shape of the actual
timeseries. This qualitative evidence is consistent with the quanti-
tative metrics previously discussed, which confirm that the transfer
learning process improved the ability of the model to capture rele-
vant patterns. Such improvements can also be observed in Figures
2a, 2b, and 2c, and are further highlighted in the corresponding
transfer learning results reported in Figures 2d, 2e, and 2f.

Regarding the predictions on the Alibaba dataset as shown in
Figure 3, where the data has been denormalized, the test curves
exhibit a good alignment with the actual values, showing only min-
imal deviations. This result highlights the ability of the Temporal
Transformer, once fine-tuned through transfer learning, to general-
ize effectively across different environments. The predicted series
not only follows the overall trend of the ground truth, but also
captures local fluctuations and short-term variations, which are
typically harder to reproduce. This behavior further confirms the
robustness of the approach and supports the conclusions drawn
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Table 3: Forecasting metrics by lookback window (Window) and steps ahead. The acronyms PT and FT respectively indicate the

pre-trained and the fine-tuned model.

R? MSE MAE RMSE
Window Steps PT (Azure Test) FT (Alibaba Test) FT (Azure Test) PT (Azure Test) FT (Alibaba Test) FT (Azure Test) PT (Azure Test) FT (Alibaba Test) FT (Azure Test) PT (Azure Test) FT (Alibaba Test) FT (Azure Test)
1 0.8425 0.8658 0.8525 0.0047 0.0063 0.0044 0.0304 0.0523 0.0354 0.0686 0.0794 0.0664
6 2 0.8203 0.8405 0.8194 0.0054 0.0075 0.0054 0.0326 0.0589 0.0428 0.0733 0.0867 0.0735
3 0.7644 0.8302 0.7980 0.0070 0.0080 0.0060 0.0363 0.0619 0.0416 0.0839 0.0894 0.0777
1 0.8468 0.8674 0.8504 0.0046 0.0062 0.0045 0.0292 0.0516 0.0367 0.0677 0.0788 0.0669
12 2 0.8163 0.8404 0.8196 0.0055 0.0075 0.0056 0.0313 0.0590 0.0425 0.0741 0.0866 0.0749
3 0.7826 0.8262 0.8034 0.0064 0.0081 0.0061 0.0342 0.0618 0.0432 0.0801 0.0898 0.0781
1 0.8489 0.8701 0.8513 0.0045 0.0061 0.0046 0.0288 0.0508 0.0375 0.0670 0.0781 0.0677
24 2 0.8231 0.8428 0.8220 0.0053 0.0074 0.0055 0.0309 0.0579 0.0437 0.0729 0.0860 0.0745
3 0.7915 0.8295 0.8078 0.0062 0.0080 0.0063 0.0337 0.0609 0.0446 0.0787 0.0894 0.0793
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Figure 2: Comparison of prediction results on the Microsoft Azure Trace dataset. Subfigures 2a-2b-2c show model trained only
on the Azure dataset, while Subfigures 2d-2e-2f show the corresponding model fine-tuned with transfer learning.

Table 4: Model size (MB) by lookback window and steps
ahead.

Window  Steps Pre-Trained (Azure) Fine-Tuned (Alibaba)

6,12,24 1,2,3 3.2 3.2

from the quantitative metrics. Qualitative evidence can be clearly
observed in Figures 3a, 3b, and 3c, where the predicted trajectories
are nearly indistinguishable from the corresponding actual curves.
Table 6 compares the Temporal Transformer trained with trans-
fer learning with other models available in the literature considered,
in this work, as baselines. The first difference is that the other mod-
els are trained with one dataset. Unfortunately, this is often neither
the Microsoft Azure Trace or the Alibaba Trace dataset. PlanetLab
is a old dataset, while the custom dataset is not accessible. The
proposed model is comparable in terms of MSE, RMSE and MAE
when the lookback window size is 6 and 12 steps long. In the first
case, all variants of the proposed model have better results than the

baselines. The experiment with a window 12 steps long is compa-
rable with the Gradient Boosting, but better results are obtained by
the model that predicts 3 steps ahead.

5 Conclusion and Future Works

In this paper, we proposed a Temporal Transformer architecture
to forecast CPU workloads in the computing continuum, with a
focus on leveraging transfer learning from VMs to containers. By
pretraining the model on the Microsoft Azure dataset and subse-
quently fine-tuning it on the Alibaba dataset, we demonstrated that
knowledge can be effectively transferred across different virtualiza-
tion environments. The model achieved consistently high R? values
(above 0.80) with low MSE, MAE, and RMSE, while preserving a
compact size of 3.2 MB and inference times suitable for real-time
operation. These results highlight both the accuracy and efficiency
of the approach, making it viable not only for cloud platforms but
also for edge intelligence deployments. From a qualitative perspec-
tive, the predicted CPU utilization curves closely follow the actual
values, capturing both global trends and local fluctuations. This
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Table 5: Average inference time (seconds) with 95% confidence interval by lookback window (Window) and steps ahead.

Fine-Tuned (Alibaba Test)

Fine-Tuned (Azure Test)

0.0323 [0.0322-0.0323]
0.0379 [0.0378-0.0379]
0.0428 [0.0427-0.0428]

0.5967 [0.5947-0.5988
0.6835 [0.6779-0.6891
0.7772 [0.7723-0.7822

0.0320 [0.0319-0.0320]

0.0405 [0.0401-0.0408]

0.6187 [0.6149-0.6226

0.7963 [0.7957-0.7969

Window  Steps Pre-Trained (Azure Test)
0.5993 [0.5961-0.6025]
6 2 0.6760 [0.6741-0.6780]
3 0.7866 [0.7861-0.7870]
0.6175 [0.6170-0.6180]
12 2 0.7065 [0.7002-0.7127]
3 0.7871 [0.7813-0.7928]
0.6235 [0.6232-0.6238]
24 2 0.7240 [0.7231-0.7250]
3 0.7923 [0.7916-0.7930]

0.0317 [0.0317-0.0318]
0.0344 [0.0344-0.0344]

0.6128 [0.6125-0.6131
0.7114 [0.7078-0.7149

[
[
[
[
0.0371 [0.0368-0.0373]
[
[
[
[

0.0383 [0.0383-0.0384]

]
]
]
]
0.7121 [0.7088-0.7153]
]
]
]
]

0.7926 [0.7920-0.7931
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Figure 3: Comparison of prediction results on the Alibaba dataset on Training-Validation-Test data. Subfigures 3a-3b-3c show

the corresponding model trained with transfer learning.

confirms the ability of the Temporal Transformer to model work-
load dynamics and adapt to heterogeneous environments through
transfer learning.

Future work will focus on extending the methodology to mul-
tivariate forecasting by incorporating additional metrics such as
memory and network utilization. Another promising direction is
the integration of federated and distributed learning strategies, en-
abling workload prediction directly at the edge while preserving
data privacy. Furthermore, we envision the development of a predic-
tive scheduling framework to manage the deployment of microser-
vices, specifically containers and VMs, in order to assess efficiency
in real-world scenarios. Finally, deploying and benchmarking the
proposed approach in operational continuum infrastructures will
provide further validation of its robustness and practical impact.
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