)

Check for

updates

B DIGITAL Assoiation foe
ACM@ LIBRARY o i @mq’e")
{y Latest updates: https://dl.acm.org/doi/10.1145/3772052.3772241

RESEARCH-ARTICLE
GridGreen: Integrating Serverless Computing in HPC Systems for
Performance and Sustainability

AMIT SAMANTA, The University of Utah, Salt Lake City, UT, United States
RYAN STUTSMAN, The University of Utah, Salt Lake City, UT, United States
ROHAN BASU ROY, The University of Utah, Salt Lake City, UT, United States

Open Access Support provided by:
The University of Utah

I PDF Download
}\3 3772052.3772241.pdf
< 26 January 2026

Total Citations: 0
Total Downloads: 52

Published: 19 November 2025
Citation in BibTeX format

SoCC '25: ACM Symposium on Cloud
Computing

November 19 - 21, 2025

Online, USA

Conference Sponsors:
SIGOPS
SIGMOD

SoCC '25: Proceedings of the 2025 ACM Symposium on Cloud Computing (November 2025)

https://doi.org/10.1145/3772052.3772241
ISBN: 9798400722769

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3772052.3772241
https://dl.acm.org/doi/10.1145/3772052.3772241
https://dl.acm.org/doi/10.1145/contrib-81460642259
https://dl.acm.org/doi/10.1145/institution-60025488
https://dl.acm.org/doi/10.1145/contrib-81314495110
https://dl.acm.org/doi/10.1145/institution-60025488
https://dl.acm.org/doi/10.1145/contrib-99659634903
https://dl.acm.org/doi/10.1145/institution-60025488
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60025488
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3772052.3772241&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/mod
https://dl.acm.org/conference/mod
https://dl.acm.org/sig/sigops
https://dl.acm.org/sig/sigmod
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3772052.3772241&domain=pdf&date_stamp=2026-01-13

GridGreen: Integrating Serverless Computing in HPC Systems for
Performance and Sustainability

Amit Samanta
University of Utah
Salt Lake City, USA

Abstract

We present GridGreen, a scheduling framework that improves the
sustainability and performance of scientific workflow execution by
integrating serverless computing with traditional on-premise high
performance computing (HPC) clusters. GridGreen allocates work-
flow components across HPC and serverless environments leveraging
spatio-temporal variation of carbon intensity and component exe-
cution characteristics. It incorporates component-level optimization,
speculative pre-warming, I/O-aware data management, and fallback
adaptation to jointly minimize carbon footprint and service time
under user-defined cost constraints. Our evaluations on large-scale
bioinformatics workflows across leadership-class HPC facilities and
cloud-based serverless regions demonstrate that GridGreen achieves
robust, cost-effective execution while improving carbon efficiency.

CCS Concepts

- Computer systems organization — Cloud computing.

Keywords

Cloud Computing, High Performance Computing, Serverless Com-
puting, Carbon Footprint, Sustainability.

ACM Reference Format:

Amit Samanta, Ryan Stutsman, and Rohan Basu Roy. 2025. GridGreen:
Integrating Serverless Computing in HPC Systems for Performance and
Sustainability . In ACM Symposium on Cloud Computing (SoCC °25), No-
vember 19-21, 2025, Online, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3772052.3772241

1 Introduction

Why is sustainability of HPC systems becoming a growing
concern? High performance computing (HPC) systems are becom-
ing central to progress in scientific discovery, engineering, and
national infrastructure. However, the growing scale and usage in-
tensity of these systems have raised serious concerns about their
environmental sustainability [38]. As compute demands surge —
from global data generation projected to grow from 1.2 trillion
gigabytes in 2010 to 175 trillion by 2025 [18] — HPC facilities con-
tinue to scale up, often at the cost of energy efficiency. For instance,
the Aurora supercomputer (2025) of Argonne Leadership Comput-
ing Facility consumes more than 30x the peak power of Theta
(2017) [52]. Power consumption alone does not fully capture sus-
tainability: the environmental impact also depends on the carbon

This work is licensed under a Creative Commons Attribution 4.0 International License.
SoCC 25, Online, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2276-9/2025/11

https://doi.org/10.1145/3772052.3772241

Ryan Stutsman
University of Utah
Salt Lake City, USA

388

Rohan Basu Roy
University of Utah
Salt Lake City, USA

intensity (CI) of the regional power grid and the embodied carbon
from manufacturing and deploying HPC hardware [16, 28]. While
many datacenters aim to offset emissions [3, 6, 23, 47], current
projections estimate that data and HPC systems could account for
up to 8% of global emissions by 2030 without mitigation [4]. This
motivates a shift toward carbon-aware HPC design and workload
scheduling to address sustainability alongside performance. Recent
efforts [2, 15, 25, 40] have started to explore this space, but effec-
tive solutions must jointly account for system-level heterogeneity,
workload characteristics, and real-time carbon intensity variability.

How can we improve the sustainability of production HPC
systems? Traditional HPC systems are deployed in fixed physi-
cal locations with dedicated hardware, which makes their carbon
impact largely dependent on two factors: the embodied emissions
of the installed infrastructure and the carbon intensity (CI) of the
local power grid impacting the operational emissions. Efforts to
improve sustainability in this model often focus on optimizing
code to use fewer resources or reduce energy consumption per
job [65, 65, 74]. Several HPC centers have started incentivizing
such practices by offering carbon credits or queue priority for
energy-efficient jobs [34, 62, 71]. However, these strategies are
inherently limited by the constraints of the underlying HPC archi-
tecture, which is tied to a single location (thus, limiting operational
emission reduction opportunities) and fixed hardware configuration
(thus, limiting embodied emission reduction opportunities).

In contrast, serverless computing, already gaining traction in
HPC for autoscaling, modularization, and resource efficiency [20,
55, 56, 58, 59], offers new opportunities for sustainable workload
execution. Serverless functions can be executed across multiple
cloud regions, and this geographical flexibility enables leveraging
spatio-temporal variations in CI. When Cl is high at the HPC facility,
components can be offloaded as stateless serverless functions to
cleaner regions, which is not possible in conventional HPC systems.
Moreover, serverless platforms can also improve embodied carbon
footprint by introducing hardware heterogeneity. While serverless
has been explored for performance and elasticity [11], its potential
for improving the sustainability of HPC remains unexplored.

What are the challenges of integrating serverless into HPC?
While serverless computing offers flexibility, scalability, and po-
tential sustainability benefits, integrating it into HPC workflows
introduces several challenges. Serverless platforms are stateless
and lack direct communication primitives, leading to I/O overhead
when components exchange data across phases [10]. Cold start la-
tency [35], unpredictable execution environments, and the absence
of energy visibility further complicate scheduling decisions [32].
Moreover, serverless computing can be expensive if not used ju-
diciously, particularly when functions are invoked frequently or
involve large data transfers [57]. From a sustainability standpoint,

https://doi.org/10.1145/3772052.3772241
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772052.3772241

SoCC ’25, November 19-21, 2025, Online, USA

1000Genome

Epigenomics

Consecutive
Phases

[Mutation Overlap (625) J [Frequency (625)]

Fast2bfq (500)

Y/ AR "
C»omponcms f ' Mapmergel (2)
SRAsearch inaPhase « B o == - - o '
Mapmerge2 (1)

Mergel (2)

Legend: Operation Name (number of
components in the operation)

FasterQ-Dump (200)

Figure 1: HPC applications are being designed as workflows
with multiple phases and with components in each phase.
The components in the same phase can run in parallel, and
two consecutive phases run one after another.

offloading to serverless without accounting for dynamic carbon
intensity, data movement, or embodied emissions can lead to sub-
optimal outcomes [54]. Addressing these challenges requires a co-
ordinated system that accounts for performance, cost, and carbon.

Key Contributions. The following are our key contributions:

2

1. We present the first system for hybrid execution of HPC work-

flows that integrates traditional HPC infrastructure with production-
grade serverless platforms to improve sustainability. Grid-
Green jointly minimizes carbon footprint and service time
under a user-defined cost constraint

. We improve the performance of widely used bioinformatics

workflows — 1000Genome, Epigenomics, and SRAsearch [13,
45, 60].

. We design and implement a scheduling framework that incor-

porates component-level optimization, speculative pre-warming,
I/O-aware data management, and fallback adaptation, guided
by real-time carbon intensity and profiling data.

. We demonstrate that GridGreen achieves balanced perfor-

mance and carbon footprint across varying cost constraints,
serverless regions, and HPC facilities including Argonne, Lawrence
Berkeley, and Oak Ridge, leveraging spatio-temporal carbon
variation. GridGreen is open-sourced at: https://doi.org/10.
5281/zenodo.15244027.

Background and Motivation

In this section, we discuss the necessary background details and
motivate the design of GridGreen.

HPC Workflows and Execution Model. Scientific and HPC appli-
cations, used in domains such as biology, physics, and climate mod-
eling, are increasingly following a modular workflow-based design,
structured as Directed Acyclic Graphs (DAGs) [5, 12, 22, 41, 49, 51].
Each node in the DAG represents a distinct computational compo-
nent (a collection of component can together perform an operation),
and edges encode data or control dependencies. This decomposition

389

A. Samanta et al.

2500K
2000K

3 1500K
1000K
500K

B Polaris

s)

Ime!

Queue Wait
Ti

Utilization (%)

8 16 32 64
Nodes Requested

(@)

Figure 2: Queue wait time significantly impacts service time
(a), and HPC workflows underutilize allocated nodes (b).

128

(b)

improves scalability, encourages reuse, and enables better perfor-
mance tuning compared to monolithic applications.

We study three representative large-scale scientific workflows:
1000Genome, SRAsearch, and Epigenomics [13, 45, 60]. These
workflows automate critical genomic and biomedical processing
pipelines. They are all open-sourced and largely capture character-
istics of production HPC workflows. For example, more than 80%
of components of these workflows are used in other major Exascale
Computing Projects (EXAALT, GAMESS, and ExaAM), belonging
to various domains (material-science, biology, and electromagnet-
ics) [46]. Each workflow consists of multiple phases, where a phase is
a group of components that can execute in parallel. Two consecutive
phases execute sequentially, and dependencies across components —
such as fan-in, fan-out, and many-to-many data transfers, resulting
in significant data movement between phases. The workflows con-
tain multiple phases with hundreds of components in each phase,
as shown in Fig. 1. The number of components and their resource
demands vary widely across phases, resulting in different compute
resource requirements at different phases of execution.

In traditional HPC environments, workflows are submitted through
batch scheduling systems such as SLURM or PBS [8, 75]. A user
specifies the number of nodes required and the workflow is queued
until resources become available. This queue wait time is non-trivial
and can significantly impact overall workflow’s service time (execu-
tion time plus starting time, which is the queue wait time in this
case). Fig. 2(a) shows the average queue wait time for jobs with
different numbers of requested nodes of the supercomputer Polaris
at Argonne Leadership Computing Facility. We see that the queue
wait time is significant and generally increases with the number
of requested nodes, as larger dedicated jobs are more difficult to
schedule within the cluster’s fixed resource pool.

Once allocated, HPC nodes remain dedicated to a workflow for
the entire duration of its execution. However, as illustrated in Fig. 1,
the number of components can vary significantly across workflow
phases. In addition, different phases may have distinct resource
requirements depending on the nature and scale of their compo-
nents. Since HPC environments require users to pre-allocate a fixed
number of nodes, this leads to resource under- or over-utilization
across phases. In practice, users tend to allocate enough resources
to handle the most resource-intensive phase, which results in sub-
stantial underutilization during other phases. Fig. 2(b) demonstrates
this effect for the SRASearch workflow, showing low utilization
across most phases when 200 nodes are allocated for execution. This
approach can also increase the overall service time, as requesting
more nodes typically leads to longer queue wait times.

https://doi.org/10.5281/zenodo.15244027
https://doi.org/10.5281/zenodo.15244027

GridGreen: Integrating Serverless Computing in HPC Systems for Performance and Sustainability

120 o
X £ =80
3 100 < 60 o X
= 80 v &H 60
2 € 40 <]
2 60 = T £ 40
O 40 20 o=
20 g O™ 20
0 0

1000 Epigenomics SRA
Genome

1000 Epigenomics SRA
Genome

1000 Epigenomics SRA

search search Genome search

Figure 3: Serverless computing can have high execution costs,
I/0 time, and cold start latencies (I/O Time and Cold Start
Time are expressed as a percentage of service time).

Observation 1. While HPC workflows offer modularity and par-
allelism through their phase-component structure, different phases
often have varying resource requirements. In traditional HPC set-
tings with fixed node allocation, this mismatch leads to resource
underutilization across phases and longer queue wait times when
over-provisioning for the most demanding phase.

How can serverless computing be effective for HPC? Server-
less computing is a cloud service model where users deploy small,
stateless functions that automatically scale to handle demand and
are billed only for actual execution time. This model eliminates
the need for managing underlying infrastructure and provides fine-
grained resource allocation. Functions scale automatically and are
billed on a pay-as-you-go basis, making the model flexible and
cost-efficient for bursty workloads. This autoscaling capability di-
rectly addresses the resource under- and over-utilization challenges
discussed earlier in HPC workflows, where phases with varying
component counts and compute demands are executed over a fixed
set of pre-allocated nodes. In a hybrid setting — combining server-
less with a set of HPC nodes, several components can be offloaded
as functions, reducing the need for large HPC reservations (thus
potentially lowering total service time due to the reduction of queue
wait time) and improving the HPC system utilizations. Due to this
flexibility, leadership HPC centers have started integrating server-
less into their platforms [11].

However, while serverless introduces benefits, it also presents
new challenges in HPC contexts. First, production serverless envi-
ronments can incur significant costs. Fig. 3 shows that executing a
single run of our target workflows purely via serverless can cost
over hundred dollars, and the cost grows even more with an increase
in the input size. In practice, these workflows are run repeatedly
by users with varying inputs and configurations, amplifying the
cumulative expense of full serverless execution.

Second, serverless functions are stateless and lack direct commu-
nication mechanisms. In public cloud environments, functions do
not expose network identities and cannot communicate via message
passing. Instead, data is exchanged through external storage sys-
tems (e.g., S3 or EFS in AWS), which introduces significant latency.
HPC workflows are often I/O-intensive, and such storage-mediated
transfers can constitute a large fraction of total service time - ex-
ceeding 60% in some cases, as seen in Fig. 3. Thus, naively offloading
all components can degrade performance unless I/O-sensitive com-
ponents are carefully placed or data exchange is explicitly managed.

Third, serverless functions suffer from cold start delays. When a
function is invoked, its code, dependencies, and input data must be
transferred to the server and loaded into memory. This initialization

390

SoCC ’25, November 19-21, 2025, Online, USA

400 220

g2 || 2
< =

2 s = 1.5
@ < 300 e
=
=2 HPC s}
L= o 1.0
& —— Serverless '
&3 200 c
22 | L WA | 03
5=
O ©

W17 35 4 35 Goo

HPC HPC HPC Serverless
Hours Oak Ridge Argonne Berkeley

(a) Carbon Intensity (b) Carbon Footprint
Figure 4: Serverless execution has the potential to reduce the
effective carbon footprint over traditional HPC execution.

time can dominate execution, especially for workflows with large
input and dependency sizes. To mitigate the effects of cold starts,
service providers keep-alive [57] or pre-warm [48] functions, which
basically means having the function and its dependencies loaded
into memory on a server ahead of invocation, so that subsequent
requests can have a warm start (avoid cold start overhead). However,
keep-alive or pre-warming consumes resources and is costly for
a provider. Cloud providers must pre-allocate resources to keep a
function warm, but predicting whether a pre-warmed function will
actually be invoked is challenging — otherwise, the pre-warming
effort results in wasted resources.

As shown in Fig. 3, the cold start time can be a significant per-
centage of the total service time (execution time including I/O time
and cold start time, which is zero in case of a warm start) if all
components of a workflow experience cold starts — sometimes the
service time can even double compared to execution time, as seen
for Epigenomics. This overhead arises because serverless platforms
need to provision runtime environments on demand, load code,
and initialize dependencies before execution begins. Therefore, to
mitigate this effect, components must be selectively and opportunis-
tically pre-warmed before invocation.

Observation 2. Serverless offers autoscaling and pay-as-you-go
benefits that can complement HPC by reducing underutilization
and queue delays. However, challenges such as high cost, I/O bot-
tlenecks, and cold starts necessitate intelligent scheduling and se-
lective pre-warming to maintain performance and efficiency.

How can serverless computing make HPC sustainable? We
discussed how serverless computing offers benefits for HPC in
terms of resource utilization and queue wait time improvement.
However, another less explored but increasingly urgent motivation
for considering serverless computing in HPC is environmental
sustainability. As leadership-scale systems continue to grow in
power consumption and usage scale, the carbon footprint associated
with HPC workloads has become a growing concern [38].

Carbon emissions are typically categorized into two components:
embodied and operational. Embodied carbon footprint refers to the
emissions associated with manufacturing, transporting, and decom-
posing computing hardware — this is considered a one-time cost,
amortized over the lifetime of hardware. Operational carbon foot-
print is the carbon emissions during the operation of a hardware
and it is the product of energy consumption and carbon intensity
(CI). CI represents the amount of carbon emitted per kilowatt-hour
of electricity consumed and varies depending on the mix of energy

SoCC ’25, November 19-21, 2025, Online, USA

sources in a region’s grid. Power generated from renewable sources
(e.g., wind or hydro) generally results in a much lower CI compared
to fossil-fuel-based sources (e.g., coal or natural gas). Importantly,
CI is not static; it varies both spatially and temporally. However, a
traditional HPC system is bound to a fixed location, meaning it is
unable to adapt to carbon intensity fluctuations in other regions.
Serverless computing, by contrast, is built on stateless functions
that can be launched in multiple production cloud regions across
the world. This flexibility provides an opportunity to dynamically
shift execution to cloud regions with lower CI at any given point
in time to leverage the spatio-temporal variation of CI.

To illustrate this potential, we conduct a simple experiment using
a 5-hour run of the 1000Genome workflow. In one configuration, the
entire workflow is executed on an HPC center located near Chicago
(Argonne). In a second configuration, the same workflow compo-
nents are offloaded to whichever serverless region — among six
geographically distributed locations (California, Virginia, Ireland,
Germany, Korea, and Brazil), has the lowest CI at each point of time
during execution of components in different phases. Fig.4(a) shows
that the dynamic serverless configuration significantly lowers resul-
tant CI, associated with the workflow execution based on the region
of execution, compared to static execution in a fixed HPC location.
In Fig.4(b), we comparing the total carbon footprint (dominated by
operational emissions) for executing the workflow on three differ-
ent HPC sites (Argonne, Oak Ridge, and Lawrence Berkeley) versus
purely via serverless execution across the six aforementioned cloud
regions. We observe that serverless execution lowers the carbon
footprint, owing to its ability to shift computation to cleaner grids
in real-time. These findings suggest that serverless can complement
HPC to improve the sustainability of HPC workflow executions.
Realizing these benefits, however, requires solving scheduling chal-
lenges such as identifying which workflow components to shift,
when and where to shift them, and how to handle cold start over-
heads and data movement across regions.

Observation 3. Serverless enables HPC workflows to reduce car-
bon footprint by shifting execution to regions with lower carbon
intensity. Unlike fixed-location HPC, it leverages spatio-temporal
CI variation, though effective use requires careful scheduling.

3 Design and Implementation

In this section, we first discuss GridGreen’s objectives and design
overview and then provide the design and implementation details.

3.1 Objectives and Overview

GridGreen is designed to jointly minimize (a) total service time
and (b) carbon footprint of executing HPC workflows, expressed
as dynamic acyclic graphs (DAGs), while adhering to a strict cost
budget. To achieve this, GridGreen strategically allocates resources
and schedules DAG components across heterogeneous compute
environments — a home HPC facility and serverless cloud platforms.

Upon submission of a workflow to the home HPC facility, Grid-
Green first determines the optimal number of nodes to allocate
locally. Once the home HPC facility resources are available and ex-
ecution begins, GridGreen dynamically decides which components
to execute in the local HPC environment and which to offload to

391

A. Samanta et al.

serverless cloud infrastructure. For offloaded components, Grid-
Green selects cloud datacenter regions that best balances carbon
efficiency and service time within cost constraints.

To mitigate serverless-specific overheads, GridGreen employs
speculative function pre-warming to reduce cold starts and imple-
ments intelligent data and I/O coordination mechanisms to manage
the movement of intermediate data between the HPC system and
cloud endpoints. Additionally, when predictions about the carbon
intensity of datacenter locations become inaccurate, GridGreen
activates fallback mechanisms to preserve performance and carbon
efficiency. Fig. 5 provides an overview of GridGreen’s operation.
Overall, GridGreen is a robust, cost-aware orchestration framework
that adapts to dynamic execution conditions to deliver sustainable,
and high-performant execution of HPC workflows.

3.2 GridGreen’s Design Components

We now describe the individual components that makeup Grid-
Green’s design. Each component is responsible for a distinct pur-
pose: queue wait time and carbon intensity prediction guide the
initial HPC node allocation; the scheduler assigns components to
HPC or serverless based on execution profiles, transfer overheads,
and cost constraints; pre-warming minimizes serverless cold-start
latency; the data management layer handles inter-component trans-
fers across execution environments; and the fallback mechanism
adjusts assignments when queue load or carbon intensity deviates
significantly from predictions. These components are integrated
to ensure that scheduling and execution decisions remain jointly
optimized for service time, and carbon, under a budget constraint.

HPC Node Allocation with Cost and Carbon Predictions.
When a workflow is submitted at the home HPC facility, Grid-
Green determines how many nodes N to request in the HPC cluster.
Unlike a purely performance-driven approach, GridGreen factors
in (a) projected queue wait time Q(N) at the HPC facility, (b) po-
tential serverless costs and carbon intensities, and (c) a global cost
budget B. To accomplish this, GridGreen considers a feasible range
N € {Nnin, - - -, Nmax } and predicts the queue wait time Q(N) via
a regression model trained on the past one month of job logs. This
captures how requesting more nodes often leads to higher queue
delays due to resource contention and scheduling backlogs [42].
In parallel, GridGreen forecasts near-future carbon intensity (CI)
both for the home HPC facility and for each serverless region using
short-horizon prediction models aligned with WattTime’s method-
ology [1, 73]. WattTime is widely used for real-time and forecasted
emissions monitoring in systems research [30, 31, 37, 63]. It collects
data from grid operators, U.S. EPA, NOAA, and EIA. It computes
marginal carbon intensity forecasts by combining historical grid
emission data with real-time market dispatch information from
independent system operators (ISOs). Its prediction model incorpo-
rates a rolling window of past emissions (typically the past 24-72
hours) and grid mix characteristics, then applies a gradient-boosted
regression tree ensemble to forecast CI over a 24-hour horizon in
5-minute intervals [44, 53, 66]. GridGreen uses WattTime’s CI pre-
diction — for each datacenter region r € {1,...,R} and the local
HPC facility’s region Clj,(t), it constructs a model that takes as
input historical CI traces, grid generation type shares (e.g., coal,
solar, wind), and local demand patterns to predict CI,.(t) for future

GridGreen: Integrating Serverless Computing in HPC Systems for Performance and Sustainability SoCC ’25, November 19-21, 2025, Online, USA

& Service Time |

CI Variations

T, = max (tfjx“ + t;ffer) (1)

; Catbon | veVp
Footprint ~ }

where 157 is the execution time of component v in its assigned
| g @ i location (HPC or serverless), and tiff " is the additional time re-
ke m Variations Constraint | quired to transfer input data for component v if produced in a
irginia . H H
HPC(r\:JAU(r!()ﬂow 20 = i Function | £y 5o 1ime ; different environment. Given sequential phase execution, the total
Warmup Carby i workflow service time is then calculated as:
. 00 & o
ol Walietsdunt’ 0N S
P
Figure 5: GridGreen allocates resources in a home HPC facil-
: : , o Tota = Q(N) + > T, (2)
ity, and dynamically schedules components in HPC facility =

and across various serverless locations to jointly optimize

service time and carbon footprint, under a budget constraint. where Q(N) is the initial queue wait time at the HPC facility for

allocating N nodes, and P is the total number of workflow phases.
To estimate the total carbon footprint, GridGreen considers both

times ¢ corresponding to expected execution phases. This predic- operational and embodied carbon emissions. Operational carbon

tion enables GridGreen to determine how CI will evolve over the is computed as the product of each component’s measured energy

hours during which the workflow runs, and hence influences both consumption (from profiling) and the forecasted carbon intensity

initial node allocation and downstream scheduling decisions. (CI) at its assigned location during execution. Embodied carbon
Given these predictions and the global cost budget B, GridGreen is added to reflect the emissions associated with manufacturing

enumerates candidate values of N and assesses whether the re- hardware. Thus, the total carbon footprint is given by:

sulting queue delay plus required serverless offloading (under a

cost constraint) can likely yield acceptable overall service time and B P omb

carbon footprint. In other words, if the system anticipates limited Crotal = Z Z (EU X Cly(ty) + G,) ®)

benefit from large N due to extremely long queue times, it may p=10eV,

favor a smaller allocation combined with heavier use of serverless where E, denotes the operational energy usage of component v,

(within the budget). Conversely, if local HPC nodes are cleaner CI,(t,) represents the forecasted carbon intensity at the assigned

or if serverless usage might exceed cost constraints, GridGreen location and time, and C&™® is the amortized embodied carbon for

can reserve more nodes. This interplay of queue wait, cost, and fu- the hardware running . In our execution environment, components

ture carbon profiles drives the initial decision of N. Next, we discuss are executed either on uniform HPC nodes or on similar serverless

GridGreen’s component-level scheduling approach. hardware provided by a single cloud vendor - this difference in

Component-Level Scheduling and Optimization. Once Grid- execution environment causes variations in embodied carbon across

Green selects N HPC nodes and they become available, workflow assignments. However, we observe that the impact of operational
execution begins. HPC workflows typically execute in multiple se- carbon is greater, and considering only operational carbon would
quential phases, each consisting of components that run in parallel. yield nearly identical outcomes. Nevertheless, for completeness,
Components within a phase are assigned to execute either on a GridGreen explicitly accounts for embodied carbon also.
single HPC node or on serverless functions in one of several cloud Through exhaustive search via simulation, GridGreen optimizes
regions. The assignment must respect the global cost budget of B, scheduling by evaluating every feasible component assignment
which accounts for all serverless execution and data transfer costs. across HPC nodes and multiple serverless regions, subject to the
Components running on HPC nodes do not incur monetary costs. global cost constraint B. Specifically, the optimization jointly min-
To determine the schedule for optimizing service time and carbon imizes total service time and total carbon footprint (with equal
footprint, GridGreen performs a brute-force simulation search over or other configurable weights on both objectives), enumerating
possible component assignments to HPC and serverless locations. choices across execution environments and regions. The exhaus-
For each component, GridGreen leverages pre-profiled execution tive search completes in under a minute for all evaluated workflows,
time and energy measurements obtained separately for a single while the workflow execution times are often in the range of hours.
HPC node and for each potential serverless region. These profiles, The profiling cost, both in time and carbon, is amortized over 5 to
obtained periodically and reused across multiple workflow runs, 7 runs of the same workflow, while developed HPC workflows are
introduce negligible overhead due to the relatively static nature of executed hundreds of times. This combination of exhaustive search
hardware platforms. During profiling, the execution time of each and upfront profiling is also used in other HPC-cloud scheduling

task is computed as the sum of its profiling-based execution time solutions due to its negligible overhead relative to long workflow
runtimes, and the resulting gains outweigh the profiling costs since

and any associated data transfer delays if its input is produced in a
they are executed repeatedly across multiple submissions [10, 55].

different execution environment (HPC facility or another region).

Within each workflow phase, since components execute concur- Speculative Pre-Warming in Serverless Regions. To mitigate
rently, the phase execution time is defined as the maximum runtime cold-start delays in serverless platforms, GridGreen employs spec-
across all components in that phase. Formally, for a phase p with ulative pre-warming. At the end of each phase, when execution
component set V}, the execution time is: is nearing completion, GridGreen speculatively determines which

392

SoCC ’25, November 19-21, 2025, Online, USA

components are likely to be offloaded in the next phase based on
their assignment from the scheduling step. It identifies the server-
less region with the lowest forecasted carbon intensity at that time
and selects it as the target for pre-warming. For each such com-
ponent, GridGreen triggers a dummy function invocation in the
selected region - this involves deploying the actual function exe-
cutable bundled with its data and dependencies as a zipped package,
invoking it, and immediately terminating the function. On AWS
Lambda, this dummy invocation causes the backend to send the
zipped package to a node in the selected region, unpack it, load
dependencies, and cache them in memory, effectively initializing
the container and keeping it warm for a short interval [70].

Our pre-warming strategy is deterministic and robust by design.
For a given workflow and its scheduling assignment, pre-warming
decisions are uniquely determined by the mapping of components
to HPC or serverless regions and by predicted carbon intensities. At
the end of each phase, only components in the next phase assigned
to serverless regions are pre-warmed, and each such component is
pre-warmed exactly once in the region with the lowest forecasted
carbon intensity. This deterministic approach ensures consistent
behavior across executions and avoids redundant warm-ups. Addi-
tionally, if pre-warming fails or predicted conditions change, Grid-
Green’s fallback mechanism (discussed later) dynamically reassigns
components to alternate regions to maintain reliability.

By pre-warming in the chosen low-carbon region, GridGreen
ensures that when a function is used to invoke a component in the
next phase, it has a warm start, avoiding the cold start overhead. In
some of our evaluated workflows, cold starts without pre-warming
led to 8-13% increases in overall phase execution time, particularly
for components with large dependencies and datasets. The cost
of pre-warming is minimal and is accounted toward the total cost
constraint, but its service time benefits outweigh this overhead,
making it an important component in GridGreen’s design.

Data Management and Transfer Costs. Data movement between
components affects both service time and cost. Most data transfers
occur at phase boundaries, as outputs of one phase become inputs to
the next. When components are distributed across the HPC facility
and serverless regions, GridGreen accounts for three primary kinds
of transfers: (a) HPC facility to serverless region, (b) serverless to
serverless within the same region, and (c) serverless in one region
to serverless in another region.

Transfers from HPC to serverless involve staging output data
from the HPC file system to cloud storage in the destination region,
which is then accessed by the receiving serverless function. If com-
ponents within a phase are co-located in a single serverless region,
they share a common cloud-backed file system (e.g., AWS Elastic
File System) mounted to each function. Serverless-to-serverless
communication across regions, however, requires copying inter-
mediate data to remote object storage and reloading it in the next
region — a process that adds latency and incurs cross-region egress
fees. Serverless functions do not support direct inter-function com-
munication (e.g., via sockets or MPI), so all data exchange must be
mediated via file I/O on shared storage.

For workflows with components originally designed for tightly
coupled HPC execution using MPI, GridGreen translates inter-
component MPI exchanges to file-based coordination using remote

393

A. Samanta et al.

Scheduling

@

Allocated HPC Nodes

CI of Serverless
Regions

CI of HPC
Facility

Current
Phase
Execution

-49)

Time & Energy
Consumption

Executing in Home ~
HPC HPC Facility

Queue Wait

) @ HPC to Serverless
Fallback 1o HPC Fallback 0 H i {:c;:}
Serverless
Actual CI s o Executing in /
Speculative Sorvert
Function P =
unction
[- Y-\ Pre-warming /g
PredictedCI "ttt

Serverless region A Serverless region B

Intra and Inter-Region Data Management & Transfer
[> via Common Storage or File System

Figure 6: GridGreen integrates component-level scheduling,
dynamic HPC node allocation, carbon- and service-time-
aware optimization, speculative pre-warming, I/O and data
management, and fallback mechanisms in its design.

storage mounts. Each MPI send/receive pair is rewritten as a two-
step process: writing data to a shared file system from the sender
and loading it from storage by the receiver. While this model in-
troduces additional latency, it ensures correctness and portability
across regions. These latencies are explicitly measured and included
in the component’s transfer delay t;ff " and overall execution time.
Components with frequent or large intermediate exchanges are
generally favored for HPC execution, where direct memory and
low-latency interconnects minimize communication cost.

Formally, when a component v consumes output from v’, and
their assigned locations differ, the transfer time is:

t;,cfer _ ijy/_w i)
src—dst
cost,; f = Cxfer (dy -0, STC, dst) (5)

where d, _,, is the data volume to be transferred, BWy;c_4s is the
average available bandwidth between environments, and cxfer (+)
captures associated ingress and egress charges. All transfer costs
are accumulated into the overall cost budget, ensuring that they
are respected during scheduling. When components in a phase
are co-located in the same serverless region, intermediate data is
retained in the local shared file system, avoiding repeated transfers.
If the next consumer component is on HPC, GridGreen pulls the
data back to the HPC file system post-execution, again accounting
for transfer time and reverse egress charges.

To reduce end-to-end latency, GridGreen pipelines transfers with
computation where possible. For example, data generated early in
a phase can begin transfer before the entire phase completes. This
overlap allows dependent components in the next phase to start
as soon as their inputs arrive. These data management strategies
are tightly coupled with GridGreen’s scheduling decisions. Com-
ponents with high communication needs are preferentially sched-
uled on HPC, while serverless regions are used for compute-heavy,
loosely coupled components where data exchange overhead re-
mains modest. This data movement model enables GridGreen to
balance the benefits of geographic carbon intensity variations with
the practical constraints of serverless I/O, while staying within a
strict cost budget and minimizing total service time.

GridGreen: Integrating Serverless Computing in HPC Systems for Performance and Sustainability

Algorithm 1: GridGreen Scheduling Overview
Input: DAG G = (V, E), cost budget B, node range
{Nmin, RRES Nmax}
Output: Node count N*, schedule S*
foreach N in {Npip, - . ., Nmax } do
‘ Predict Q(N) from HPC job logs;
3 end
Forecast Cly(t), {CI-(t)} using WattTime model;
Select N* minimizing queue-carbon-cost tradeoff;

[

'S

3

=Y

foreach valid schedule S over G given N* do
ComPUte Tiotal = Q(N*) + Zp maXyev, (thec + tcher);
Compute Ciotal = Zp Zvefvp (Ey - CLy(ty) + Czejmb);
Discard S if Tiora > B;

end

<

o

)

10

1

oy

Select S* minimizing Tiota] + ACtotal, A is scaling factor;
12 Pre-warm serverless regions for offloaded components;

Adapt S* if Q(N) or CI,(t) change significantly;

13

Fallback due to Dynamic Queue and CI Changes. GridGreen
continuously monitors real-time HPC queue conditions and server-
less region carbon intensity. If there is a sudden increase in queue
load at HPC facility - such as arrival of higher-priority jobs, Grid-
Green reduces the number of allocated HPC nodes for future phases.
Similarly, if a serverless region’s carbon intensity rises significantly
above forecasted values, components originally scheduled there are
reassigned either to HPC facility (with co-location if needed) or to
an alternate serverless region. In both cases, reassignment follows
the same optimization strategy used in initial scheduling, selecting
placements that minimize total service time and carbon footprint
within the cost budget. Only components that have not yet begun
execution are migrated; running components are left undisturbed.
This adaptive fallback ensures GridGreen remains responsive to
real-time conditions without violating execution constraints. Fig. 6
shows the interactions between design components of GridGreen.

Exhaustive Search Complexity. Our exhaustive search differs
fundamentally from traditional brute-force approaches. GridGreen
performs a simulation-based search over possible component as-
signments using pre-profiled execution times and energy measure-
ments obtained offline for each HPC node and serverless region.
This search evaluates assignments via lightweight simulation, not
actual execution. Each evaluation involves only: (1) lookup of pre-
profiled metrics (O(1)), (2) arithmetic for carbon calculations, and
(3) maximum computation for phase completion time. The search
scales through phase-wise decomposition (evaluating each phase in-
dependently), cost-based pruning (eliminating assignments exceed-
ing budget constraints), and carbon threshold pruning (discarding
assignments with excessive carbon footprint regions).

3.3 Implementation and Integration

To implement GridGreen, we combine the functionality of each
design component in a unified software stack that runs on top of the
home HPC facility’s scheduler and leverages serverless providers
via their respective command-line interfaces (e.g., AWS CLI). Upon

394

SoCC ’25, November 19-21, 2025, Online, USA

receiving a workflow description, GridGreen parses the DAG struc-
ture and applies the node allocation logic first, calling a regression-
based predictor to estimate queue wait time (Q(N)) for each pos-
sible node count (N). It then queries the WattTime-based carbon
intensity forecasts [1] for the HPC facility location and each candi-
date serverless location.

After choosing N, GridGreen performs an offline brute-force
search over the DAG to determine optimal component placement.
This search operates on each phase of the DAG sequentially. For a
phase p with n components, GridGreen enumerates all k" possible
assignments (k = 1 HPC location + k — 1 serverless regions). For
each assignment, GridGreen simulates execution by: (1) calculating
each component’s execution time on its assigned location using
pre-profiled data; (2) adding transfer delays if input data comes
from a different location; (3) computing the phase completion time
as the maximum service time across all components in a phase;
and (4) calculating the carbon footprint using energy profiles and
predicted carbon intensity. We select the assignment minimizing a
weighted combination of service time and carbon footprint, subject
to the cost budget B. This search has time complexity O(P X k" X n)
for P phases and space complexity O(n). For typical workflows with
n < 100 components per phase and k < 10 locations, the search
remains tractable, completing in under one minute for workflows
with hours-long execution times.

The regression model predicting queue wait time Q(N) for N
nodes is trained offline using the past month’s HPC job logs. It
employs a linear regression approach with features such as nodes
requested, time of day, and day of the week, achieving an R? accu-
racy of over 0.8, consistent with prior HPC-scheduling work [41, 42].
To capture seasonal patterns and maintain accuracy, the model is
retrained monthly. The regression has O(mlogm) training com-
plexity and is critical for determining the initial HPC allocation.
Together with the brute-force search, which optimizes fine-grained
component placement during execution, these components form
the core of GridGreen’s scheduling framework.

Once the plan is finalized, GridGreen provisions N HPC nodes,
stages HPC-based components there, and simultaneously registers
serverless functions and their required data bundles for offloaded
components. Each offloaded component is zipped along with its
dependencies and input data, then uploaded as a deployable unit
to the target serverless region. At runtime, whenever a new phase
begins, GridGreen monitors queue load and carbon forecasts, trig-
gers speculative pre-warming if necessary, and orchestrates the
HPC-to-serverless data transfers required by the chosen schedule.

To handle the fallback mechanism in real time, the implemen-
tation continuously samples the HPC queue status and serverless
carbon feeds. If queue delays inflate or carbon intensity rises unex-
pectedly in a certain region, GridGreen modifies assignments for
the upcoming, not-yet-started components—subject to the same
budget constraints and scheduling model used initially. Data man-
agement is transparently coordinated through remote elastic net-
work file systems (e.g., AWS EFS), ensuring component inputs are
staged properly. Reassignments affect only future components, and
GridGreen maintains correctness while adapting to dynamic con-
ditions. We summarize GridGreen’s scheduling algorithm in Algo-
rithm 1. GridGreen’s implementation is based on Python3.0 and fol-
lows a methodology similar to the state-of-the-art carbon-unaware

SoCC ’25, November 19-21, 2025, Online, USA

serverless-HPC scheduler MASHUP [55], which we use as a compet-
ing solution, with extensions including WattTime API integration
for carbon intensity forecasting and RAPL for energy measurement.
Serverless functions were deployed across multiple AWS regions
to evaluate cross-region scheduling decisions and carbon-aware
execution, as detailed in the next section.

4 Experimental Methodology

Evaluated Workflows. We evaluate GridGreen using three well-
established bioinformatics workflows: 1000Genome, SRAsearch, and
Epigenomics. These are widely used in workflow systems and HPC
scheduling research [33, 41, 68, 69, 76, 77], and feature diverse DAG
patterns including fan-in, fan-out, and full inter-phase connectivity.
Their varied communication and computation characteristics make
them suitable for evaluating performance and sustainability-aware
scheduling [55]. 1000Genome spans 2,506 components across 5
stages and processes 600 GB of genetic variation data. SRAsearch
consists of 404 components and operates on 6 TB of biological se-
quence data using search-optimized compute kernels. Epigenomics
performs DNA methylation analysis using 2,007 components across
9 stages, processing 5 TB of input. Together, these workflows cap-
ture real-world scientific workloads that stress compute, memory,
and I/O subsystems [13, 45, 60]. Next, we discuss the competing
solutions evaluated to determine GridGreen’s effectiveness.

Competing Solutions. We compare GridGreen with different opti-
mal solutions, which take into consideration only one GridGreen’s
optimization goals, and with the state-of-the-art serverless-HPC
scheduler, which is unaware of carbon footprint.

Carbon Optimal (Carbon-Opt). This baseline uses the same node
allocation strategy as GridGreen to determine the number of nodes
in the home HPC facility. However, during execution, it places each
component — either on the HPC facility or in one of the serverless
regions, based solely on minimizing carbon footprint. At the start
of each phase, it selects the placement that yields the lowest sum
of operational and embodied emissions, using predicted carbon
intensity and profiled energy usage. It does not consider queue wait
time, execution time, or cost.

Service-Time Optimal (Service-Time-Opt). This baseline optimizes
purely for total service time, including queue wait time, execution
time, and data transfer overheads. The number of nodes allocated
at the home HPC facility is chosen to minimize total expected
service time based on queue predictions. During execution, each
component is placed — either on the HPC facility or a serverless
region, according to the fastest expected completion path. Carbon
footprint and cost are not considered.

Carbon-unaware Hybrid Serverles Scheduler, MASHUP [55]. 1t is the
most relevant hybrid execution framework that profiles each com-
ponent on serverless and local on-premise VM-based cluster envi-
ronments to minimize service time and cost. It does not account for
carbon footprint or HPC-specific factors such as queue wait time.
Moreover, it operates in a single serverless region and does not
support multi-region placement. In our evaluation, we implement
Mashup’s component-wise placement policy using their profiling
methodology and assign all serverless components to the region
with the lowest average CI to make the comparison representative.

395

A. Samanta et al.

@ Carbon-Opt m GridGreen(25%, 75%) @ GridGreen(75%, 25%)

e Service-Time-Opt a GridGreen(50%, 50%) v MASHUP

e - " v
E X 80 1000Genome v Epigenomics SRAsearch v
=
= Q [[o
0 Z ®
é 840 Ag ° e,

Q A]
25 o ® o ® °

0 20 40 60 80100 O 20 40 60 80100 0 20 40 60 80100
Carbon Foorprint Increase (%)
Figure 7: GridGreen jointly optimizes the carbon footprint
and service time of HPC workflows (carbon footprint expressed
as %-increase w.r.t Carbon-Opt and service time expressed as %-
increase w.r.t Service-Time-Opt).

Accounting for the Embodied and Operational Carbon Foot-
print. GridGreen uses widely-used public dataset [21, 43] to de-
termine the embodied carbon of various hardware, which is based
on the embodied carbon modeling tool ACT [27] and data from
multiple sources, including Dell’s carbon footprint data [7, 14, 64].
For accounting for the embodied carbon footprint of component
execution via serverless functions, GridGreen accounts for the em-
bodied carbon of the resources used during function execution and
pre-warming, assuming unused resources may be shared across
other cloud services. This is a standard methodology as proposed
for serverless carbon accounting [54]. GridGreen adopts a stan-
dard four-year server lifetime model [24, 61], and amortizes the
embodied carbon over this period based on the fraction of time a
component uses computing resources. For nodes allocated at home
HPC facility (dedicated nodes not shared), GridGreen accounts for
their full embodied carbon during the allocation period.

GridGreen measures energy usage for HPC execution using
RAPL [36] on bare-metal nodes and attributes the full node’s en-
ergy, as nodes are exclusively allocated. For serverless functions,
operational energy is estimated per function based on resource
usage, using the methodology for serverless carbon footprint ac-
counting as discussed in [54], similar to how embodied carbon
is accounted for. The region-wise data on carbon intensity varia-
tion with time is gathered from WattTime [1], and GridGreen uses
marginal carbon intensity, which reflects the emissions impact of
adding additional load to the grid — making it more appropriate for
scheduling decisions than average intensity [66, 73].

Experimental Platform. For the HPC facility, we use Intel Xeon
Platinum 8175M nodes with 128 GB memory, and 10 Gbps network
bandwidth, matching AWS m5 general-purpose instances. In our
evaluation, we assume these HPC nodes are located in regions
corresponding to major national laboratories. For the main set of
experiments, we assume placement at Argonne National Labora-
tory and associate it with AWS’s us-east-2 region, the closest
available AWS region. We use the marginal carbon intensity of this
region, obtained from WattTime, as a proxy for Argonne’s grid
footprint. We also evaluate two additional assumed HPC deploy-
ments: Lawrence Berkeley National Lab (mapped to us-west-1)
and Oak Ridge National Lab (mapped to us-east-1), and use the
corresponding regional carbon intensities in each case.

For serverless execution, we deploy AWS Lambda functions in six
regions: us-west-1 (California), us-east-1 (Virginia), eu-west-1
(Ireland), eu-central-1 (Germany), ap-northeast-2 (Korea),
and sa-east-1 (Brazil). We use marginal carbon intensity data
for each region during our evaluation period in March 2025. As

GridGreen: Integrating Serverless Computing in HPC Systems for Performance and Sustainability

o —— GridGreen ---- MASHUP - Service-Time-Opt
4SS 100
8\; 20 1000Genome Epigenomics ! SRAsearch
-~ b 1 1 b
&5 60 1
s 2)
5 S 401
S & 204
s [e R
o 0 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100

Carbon Foorprint Increase (%)

Figure 8: GridGreen consistently improves carbon footprint
across different components (%-increase w.r.t Carbon-Opt).

direct energy measurement is not supported on serverless, we fol-
low serverless carbon accounting methodology from [54] to esti-
mate per-function energy using profiling on equivalent bare-metal
servers and compute operational carbon accordingly. Transfer-
related emissions and delays are accounted for during multi-region
placement of components in AWS. Execution cost is determined
by standard rates charged by AWS Lambda. Inter-component com-
munication in serverless is implemented using AWS Elastic File
System (EFS), with coordination handled via aws-cli and boto3.

GridGreen’s optimization is architecture-agnostic and applies
equally to GPU-based workflows. It optimizes component place-
ment based on execution profiles, CI, and queue times, which are
metrics independent of compute architecture. GPU components
would similarly benefit from carbon-aware scheduling because the
framework’s core mechanisms - profiling energy consumption,
tracking regional CI variations, and managing queue delays - func-
tion identically across hardware types. The scheduling algorithm
treats GPUs as higher-power compute resources, automatically
accounting for their increased energy usage through the profil-
ing phase while still leveraging the same carbon-aware placement
strategies. For example, running 1000Genome GPU version on AWS
g4 instances achieves carbon footprint and service time improve-
ment within only 5-9% difference from CPU-based results.

Evaluation Metrics. We evaluate GridGreen using service time,
and carbon footprint. Service time is defined as the sum of the
HPC queue wait time and the total phase execution time, with each
phase duration determined by the longest-running component.
This also includes the data transfer overheads, warm start times
(for kept-alive resources), and cold start delays incurred during
workflow execution. Carbon footprint includes both operational
and embodied emissions, including the carbon of the keep-alive
period, along with carbon during execution. GridGreen is designed
to operate under a cost constraint as a budget where the cost refers
to the actual monetary charges incurred from the cloud provider,
including function execution, data transfer, and storage. In most
cases, carbon footprint results are reported as a percentage increase
relative to the Carbon-Opt baseline, and service time as a percentage
increase relative to the Service Time-Opt baseline.

5 Evaluation

In this section, we first evaluate the effectiveness of GridGreen and
then understand the reasons behind its effectiveness. Thereafter,
we test the robustness of GridGreen across diverse environments.

5.1 Effectiveness of GridGreen

Comparison with Competing Solutions. Fig. 7 compares Grid-
Green against competing strategies across the 1000Genome, Epige-
nomics, and SRAsearch workflows, showing the trade-offs between

396

SoCC ’25, November 19-21, 2025, Online, USA

o [— GridGreen ---- MASHUP —-— Carbon-Opt]
%52 100 - ‘
g \;; 1000Genome 7Epigenomics ! 7SRAsearch |
%DE P! |
g2 0 |
5o s A
o & R A
5 g 7 ’
2E Lt =

O 0 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100

Service Time Increase (%)

Figure 9: GridGreen consistently improves service time
across different components (%-increase w.r.t Service-Time-Opt).

° L 100 ST —_—
=~ 80 =
vEw c
SEEw 60 S -
[@©]
S22 0 40 S
og S 50 N
] =
g% =
1000 Epigenomics SRA 1000 Epigenomics SRA
Genome search Genome search

Figure 10: GridGreen reduces queue wait time and improves
HPC resource utilization (queue wait time expressed as %-
decrease w.r.t workflow execution completely in the HPC facility,
without any serverless involvement).

carbon footprint (expressed as %-increase w.r.t. Carbon-Opt) and ser-
vice time (expressed as %-increase w.r.t Service-Time-Opt). Carbon-
Opt achieves minimal carbon emissions but at the expense of higher
service time (up to 80% for 1000Genome). Conversely, Service-Time-
Opt minimizes service time but increases carbon emissions (up to
90% for 1000Genome). MASHUP performs poorly in both metrics.
Its sub-optimal performance in terms of carbon footprint stems
from fundamentally carbon-unaware scheduling. Even with our
added modification of placing all components across all phases
in the region with the lowest average carbon intensity (for a fair
comparison), MASHUP does not account for temporal variation
in carbon intensity across phases. In contrast, GridGreen adapts
component placement at each phase based on real-time regional
CI, avoiding this limitation. Additionally, MASHUP determines
whether a component should run on serverless or on-premise clus-
ter (HPC facility in this case) solely based on execution time. This
may lead to choices of execution of components with high en-
ergy usage (and hence higher operational carbon) in a region with
higher CI or long execution times (increasing embodied carbon
amortization) in the server with higher embodied carbon (among
on-premise HPC and serverless). MASHUP also ignores queue wait
time, lacks speculative pre-warming, and does not coordinate I/O
among serverless and the HPC facility, increasing service time. It
also lacks fallback mechanisms for dynamic queue and CI shifts.

In contrast, GridGreen consistently achieves balanced outcomes
across the workflows. Specifically, the default GridGreen (50,50),
which equally weights carbon and service time optimization, achieves
approximately 35% carbon footprint increase and 30% service time
increase for 1000Genome. Adjusting the weights in GridGreen en-
ables prioritization between carbon footprint and service time. The
(25,75) configuration assigns 25% weight to carbon and 75% to ser-
vice time, leading to lower service time at the cost of higher carbon.
Conversely, (75,25) gives more importance to carbon reduction,
resulting in lower emissions but higher service time. The (50,50)
configuration balances both objectives equally and is referred to as
the default GridGreen throughout this paper.

SoCC ’25, November 19-21, 2025, Online, USA

o]
o

o — 1000Genome Epigenomics SRAsearch
.g u 60 4 4
=3
>
SE40
2 E20 1
_
o= |—|
n 0 T T " T " -
With Without With Without With Without
Warmup Warmup Warmup Warmup Warmup Warmup

Figure 11: Speculative warm-up consistently reduces the ser-
vice time across all three evaluated workflows.

Fig. 8 shows the cumulative distribution of carbon footprint in-
creases across workflow components. GridGreen consistently pro-
vides a lower carbon footprint increase (w.r.t Carbon-Opt) compared
to MASHUP and Service Time-Opt. For instance, around 50% of
1000Genome components in GridGreen incur a 50% or lower carbon
increase, whereas MASHUP sees rapid escalation, reaching nearly
78% carbon increase for same proportion. Similarly, Fig. 9 demon-
strates that across all components, GridGreen efficiently manages
service time compared to MASHUP and Carbon-Opt. GridGreen’s
superior performance is due to adaptive scheduling considering the
impact of the execution time of components in serverless region v/s
HPC facility, speculative pre-warming strategy, and effective data
coordination that significantly reduces I/O and cold start delays.

Improving HPC Facility’s Queue Wait Time and Utilization.
Recall from Sec. 2 that one key benefit of introducing serverless
into HPC workflows is the potential to reduce queue wait time and
improve overall system utilization. Fig. 10 confirms this: GridGreen
reduces queue wait time by offloading components to serverless,
with reductions of 47% for 1000Genome, 59% for Epigenomics, and
21% for SRAsearch. These savings result from requiring fewer HPC
nodes, making smaller jobs easier to schedule. Simultaneously, Grid-
Green maintains high utilization of reserved HPC nodes - over 94%
on average, since by design, only a limited number of nodes are al-
located, and GridGreen selectively assigns components best suited
for local execution based on their service time and carbon footprint.
Next, we discuss the design components of GridGreen that results
in its effectiveness in reducing carbon footprint and service time.

5.2 Reasons Behind GridGreen’s Effectiveness

GridGreen allocates HPC nodes and serverless functions at a com-
ponent level by solving an optimization problem that jointly min-
imizes service time and carbon footprint. Here, we analyze how
these components contribute to GridGreen’s overall effectiveness.

Impact of Speculative Pre-Warming. One of the key design
components of GridGreen is its speculative pre-warming mecha-
nism, which proactively initializes serverless functions before their
actual invocation. This avoids cold start delays by ensuring that
the function’s code, data, and dependencies are already loaded in
memory when execution begins. Fig. 11 shows the impact of this
strategy: for 1000Genome, speculative pre-warming reduces aver-
age service time from 52 to 36 minutes; for Epigenomics, from 70 to
42 minutes. SRASearch also benefits significantly. Across all work-
flows, speculative pre-warming consistently lowers service time by
mitigating initialization overhead, especially for components with
large memory and data footprints.

Impact of Data and I/0 Management. GridGreen incorporates
explicit modeling and coordination of data transfers across HPC

397

A. Samanta et al.

o]
o

S‘EJ n 1000Genome Epigenomics SRAsearch
[60 1
=]

g £ 407

2 E 201 1

o=

0 0 , . , . , .
With Without With Without With Without
Data/lO Data/IO Data/lO Data/IO Data/lO Data/lO

Management Management Management Management Management Management

Figure 12: GridGreen’s data management helps to reduce I/O
overhead of serverless computing.

- 375
>0
CH o~
-8@8-;3507
s Q
© o O]
U§3¥325
30
v~
o Qw2
© 22 55
EEy
o O+
00O €101
%5 &
a © ol
I,_\30
>ER
9%&20*
o 2c
€ 5.9 10
=
Oa
O,

B t3

ty
Workflow Invocation Time

ts te tr ts

Figure 13: Temporal analysis of carbon intensity (at home
HPC facility — Argonne, at different periods of July 2024),
component allocation by GridGreen, and energy consump-
tion across workflow invocation times (percentage of compo-
nents and energy consumption at home HPC facility, Argonne, for

executing 1000Genome at different periods in July 2024).

and serverless components, including intra- and inter-region com-
munication. This design ensures that components with large or
latency-sensitive data dependencies are either co-located or sched-
uled to minimize I/O overheads. Fig. 12 shows the performance
benefit: for 1000Genome, service time drops from 52 to 21 minutes
when data and I/O management is enabled. Epigenomics sees a
reduction from 72 to 60 minutes, and SRASearch from 26 to 11
minutes. These improvements stem from GridGreen’s ability to
avoid redundant transfers, pipeline data movement, and handle
serverless-to-serverless I/O via shared file systems like AWS EFS,
while reserving tightly coupled components for HPC execution
where direct communication is possible.

Impact of Fallback and Component-Level Scheduling Op-
timization. GridGreen performs fine-grained, component-level
scheduling by solving an optimization that jointly considers energy
consumption and carbon intensity at execution time. Combined
with its fallback mechanism, GridGreen dynamically adapts to real-
time variations in carbon intensity. As shown in Fig. 13, carbon
intensity (at the home HPC facility, Argonne) varies significantly
across submission times (top subplot), and GridGreen correspond-
ingly adjusts the percentage of components allocated to the HPC
facility (middle subplot) — favoring higher allocation when CI is low
(e.g., around t3) and reducing it when CI is high (e.g., f;, t5). This
results in reduced energy usage at home HPC facility during high-
CI periods (bottom subplot), as seen by the drop in HPC energy
consumption at those times. This coordinated response is driven

Carbon
Intensity

GridGreen: Integrating Serverless Computing in HPC Systems for Performance and Sustainability

(o))
o
o

N B
o
(=)

(gCOz2eq/
kWh)
8

IS
o

w
o

of Compo-

nents (%)
= N
o

Percentage
N
o O o

Energy

Consum-

ption (%)
5588

N

g ¢ ¢ &

Figure 14: Carbon intensity, component allocation, and en-
ergy consumption across HPC and serverless regions (execut-
ing 1000Genome on July 2024). GridGreen adaptively favors
low-CI regions to minimize operational carbon footprint
while meeting performance constraints.

by GridGreen’s scheduling optimization to minimize operational
carbon (along with embodied) by aligning energy usage with favor-
able CI windows, and its fallback strategy, which shifts upcoming
components to alternate regions when CI unexpectedly rises.

To further illustrate GridGreen’s adaptive behavior, Fig. 14 presents
the average carbon intensity across different regions (home HPC fa-
cility at Argonne and serverless regions) in July 2024, alongside the
corresponding component allocations and energy consumption. We
execute 1000Genome every day in July 2024 and show the average
component allocations across all runs. The top subplot highlights
large CI differences - ranging from 30 gCO,eq/kWh in Ireland to
540 in Illinois (Argonne — home HPC facility). In response, Grid-
Green adaptively allocates more components to regions with lower
CI, as seen in the middle subplot, where Ireland and Brazil together
receive over 65% of components, while high-CI regions like Korea
and Argonne are less used. This behavior translates to the energy
distribution (bottom subplot), with energy consumption skewed
toward cleaner regions. These results reinforce that GridGreen’s
scheduler not only reacts to temporal CI variation (Fig. 13) but also
exploits spatial CI differences across regions. This adaptive spatial
placement is critical to carbon footprint minimization while still
lowering service time and operating under cost constraints.

5.3 Robustness of GridGreen

Performance with Different Cost Constraints. We evaluate
GridGreen’s performance under varying budget constraints, where
the cost expenditure is expressed as a percentage of the total cost
that would be incurred if the entire workflow were executed using
AWS serverless infrastructure. Fig. 15 presents GridGreen’s relative
performance (compared to Service-Time-Opt and Carbon-Opt) as
the constraint is relaxed from 20% to 60%. With more budget flexi-
bility, single-objective baselines like Service-Time-Opt and Carbon-
Opt benefit more directly—allowing them to further reduce their
targeted metric. As a result, GridGreen’s relative gap appears to

398

SoCC ’25, November 19-21, 2025, Online, USA

[:]Service Time Increase (%) 2 Carbon Footprint Increase (%)]

L‘5 o 100 1000Genome Epigenomics SRAsearch
oS 801 1
&n 1 4
8 2 60
58 404]
15} -
i a
o=
0 u y u u y y y y y
20 40 60 20 40 60 20 40 60

Cost Constraint (% of cost if entire workflow in serverless)
Figure 15: GridGreen performs effectively under different
cost constraints (carbon footprint expressed as %-increase w.r.t
Carbon-Opt and service time as %-increase w.r.t Service-Time-Opt,
cost constraint is expressed as %-increase over serverless execution).

[@ Only HPC m GridGeeen a Only Serverless]
3 0.5

N

@ 1000Genome Epigenomics SRAsearch
EE | 21 03| ®
S21 Y 1 A
5 & A 1] A
©8 5 = 0.1 =
=0 : 0 . . 0 .
10 20 30 5 15 25 35 8 12 16

Service Time (minutes)

Figure 16: Hybrid HPC-serverless execution balances Grid-
Green’s in terms of carbon footprint and service time.

widen. However, in percentage terms, GridGreen'’s performance
improves, achieving up to 20% reductions in both service time and
carbon footprint with relaxed cost constraints.

Performance across Different Deployment Modes. To assess
GridGreen’s robustness across deployment modes, we compare
GridGreen against two baselines: executing entirely in the home
HPC center (Argonne) and fully in serverless regions, as defined in
Sec. 4. As shown in Fig. 16, GridGreen consistently achieves a better
balance between service time and carbon footprint. While HPC-only
yields the fastest service time, it suffers from high carbon emissions
due to operating in a fixed, high-CI region. Serverless-only reduces
carbon emissions but incurs longer service times due to cold starts
and I/O overheads. By selectively combining both environments,
GridGreen outperforms each individual strategy in at least one met-
ric and achieves competitive overall performance. This balanced
performance results from GridGreen’s ability to place compute-
intensive components with low data dependencies on serverless
(exploiting regional CI variations) while retaining tightly-coupled,
communication-heavy components on HPC nodes. GridGreen’s
hybrid approach particularly excels for workflows with heteroge-
neous component characteristics, where neither pure strategy can
optimize both metrics effectively.

Performance at Different Home HPC Facilities. We evaluate
GridGreen’s performance by selecting different home HPC facilities:
Argonne (Illinois), Lawrence Berkeley (California), and Oak Ridge
(Tennessee). As shown in Fig. 17, GridGreen consistently achieves
a balanced trade-off between service time and carbon footprint
across all three sites. The effectiveness varies based on each facil-
ity’s regional grid characteristics and carbon intensity profiles. At
Argonne, while Carbon-Opt suffers approximately 60% service time
increase and Service-Time-Opt incurs 60% carbon footprint increase,
GridGreen maintains a balanced 40% service time increase with
only 25% carbon footprint increase. Berkeley’s cleaner grid enables
even better performance — GridGreen achieves merely 15% car-
bon footprint increase while limiting service time increase to 35%,

SoCC ’25, November 19-21, 2025, Online, USA

@ Carbon-Opt ®m GridGreen a Service-Time-Opt

_|Argonne

A

|Berkeley
A

|Oak Ridge
A

o]
o

N
o

® B e e
0 20 40 60 80 100 0 20 40 60 80 100 0O 20 40 60 80 100
Service Time Increase (%)

o

Carbon Footprint
Increase (%)

Figure 17: GridGreen’s effectiveness is consistent across HPC
facilities (carbon footprint expressed as %-increase w.r.t Carbon-
Opt and service time as %-increase w.r.t Service-Time-Opt).

compared to Carbon-Opt’s 70% service time penalty. Oak Ridge ex-
hibits similar balanced characteristics. This consistent performance
across geographically diverse facilities demonstrates GridGreen’s
robustness to varying regional carbon intensities and queue be-
haviors. The framework achieves this by dynamically adjusting
component allocation based on real-time carbon intensity — allo-
cating more components locally when Berkeley’s CI is low (due to
solar/wind availability) while offloading up to 65% of components
to cleaner serverless regions when Argonne’s grid exhibits high
CI periods. These results validate GridGreen’s practical applicabil-
ity across different HPC deployment scenarios without requiring
facility-specific tuning or resource allocations.

6 Discussion on Future Directions

Integration with production HPC schedulers. While the cur-
rent implementation of GridGreen operates as a standalone frame-
work, practical deployment requires integration with established
HPC schedulers like SLURM and PBS [50, 75]. Future work could
implement GridGreen as a scheduler plugin that intercepts job
submissions, performs carbon-aware planning, and translates de-
cisions into native scheduler commands. Specifically, GridGreen
could maintain a daemon process that monitors the scheduler’s
job queue, identifies workflow DAGs through job dependencies or
metadata tags, and dynamically adjusts resource requests before
submission. The serverless offloading logic could be embedded as
custom job prologue/epilogue scripts that detect components and
redirect their execution to cloud. This would preserve existing user
interfaces and administrative controls while enabling carbon-aware
scheduling without modifying core scheduler code.

Multi-tenant carbon fairness. Production HPC facilities serve
multiple users whose workflows compete for resources and car-
bon reduction opportunities. Future work can develop fairness
mechanisms that prevent carbon-efficient scheduling from being
monopolized by specific users or workflows. This could involve
carbon credit systems where users accumulate credits for accepting
longer queue times or performance degradation in favor of cleaner
execution windows. Alternatively, facilities could implement car-
bon budgets alongside traditional allocation metrics, ensuring each
user receives proportional access to low-carbon time slots [29, 34].
Such mechanisms would require policy frameworks that balance
individual optimization with system-wide sustainability goals.

Incorporating additional environmental metrics. While Grid-
Green focuses on carbon emissions, it can be extended to address
other sustainability factors that also exhibit spatio-temporal vari-
ation. Water usage for datacenter cooling varies significantly by
region [26] — facilities in arid areas rely on energy-intensive air

399

A. Samanta et al.

cooling while others consume substantial water resources, creat-
ing different environmental trade-offs. Similarly, fluorinated com-
pounds used in equipment manufacturing contribute significantly
to embodied emissions and face varying regional regulations [9].
Future work could enhance GridGreen’s multi-objective framework
to incorporate these complementary metrics to enable component
placement and HPC datacenter hardware procurement decisions.

7 Related Work

Serverless for HPC Workflows. Many previous research works
have focused on designing serverless solutions for HPC workflows.
DayDream [56] and StarShip [10] are serverless workflow sched-
ulers, but both operate entirely in serverless environments, unlike
GridGreen, which is a hybrid HPC-serverless framework. Day-
Dream focuses on mitigating cold starts, while StarShip reduces I/O
overhead. Neither system considers carbon footprint in scheduling
decisions. Thurimella et al. [67] explores the feasibility and benefits
of utilizing serverless computing paradigms for HPC workloads that
exhibit dynamic behavior. SwitchFlow [17] proposes a mechanism
to intelligently decompose and execute different stages of a work-
flow across various serverless platforms, selecting the most suitable
framework for each task based on its specific requirements. Copik et
al. [19] investigates the concept of software resource disaggregation
in HPC using serverless computing. But none of these works tries
to reduce the carbon footprint of HPC workflow execution.

Carbon-Aware HPC Systems. Recent work has explored carbon-
aware computing in HPC and cloud systems. Li et al. [38] quan-
tify the environmental impact of HPC and propose footprint es-
timation methods. Wassermann et al. [72] attribute HPC carbon
emissions to users based on resource usage. EcoFreq [37] reduces
environmental impact by tuning power use based on real-time grid
conditions. Clover [39] optimizes ML inference deployment with
carbon awareness. EcoLife [32] targets carbon-aware scheduling
for general serverless workloads. In contrast, GridGreen focuses
on compute-intensive HPC workflows and jointly addresses sus-
tainability (carbon footprint) and performance (service time of
workflow components) in hybrid serverless-HPC environments.

8 Conclusion

GridGreen is the first system to integrate serverless computing
in traditional HPC facilities for executing workflows to minimize
carbon footprint and service time, under cost constraints. By lever-
aging the flexibility of serverless, GridGreen dynamically adapts to
spatio-temporal variations in carbon intensity to improve sustain-
ability. It incorporates component-level optimization, speculative
pre-warming, I/O-aware data management, and fallback adapta-
tion to jointly minimize carbon footprint and service time under
user-defined cost constraints. Evaluations on real scientific work-
flows across diverse leadership-scale facility locations show that
GridGreen consistently performs well to meet its objectives.

Acknowledgments: We thank the anonymous reviewers for their
valuable feedback. This work is supported by the University of
Utah’s Kahlert School of Computing, John and Marcia Price College
of Engineering, and Scientific Computing & Imaging Institute.

GridGreen: Integrating Serverless Computing in HPC Systems for Performance and Sustainability

References

(1]
(2]

[12]

[13

[14]

[15]

[16]

[17]

[18

[19

[20]

[21]

[22

[23]

[24]

[25

[26]

2025. Home - WattTime — watttime.org. https://watttime.org/.

Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj
Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon explorer: A
holistic framework for designing carbon aware datacenters. In ACM ASPLOS.
118-132.

Amazon. 2021. Amazon Sustainability Report. https://sustainability.aboutamazon.
com/2021-sustainability-report.pdf

Anders SG Andrae and Tomas Edler. 2015. On global electricity usage of commu-
nication technology: trends to 2030. Challenges 6, 1 (2015), 117-157.

Pau Andrio, Adam Hospital, Javier Conejero, Luis Jord4, Marc Del Pino, Laia
Codo, Stian Soiland-Reyes, Carole Goble, Daniele Lezzi, Rosa M Badia, et al.
2019. BioExcel Building Blocks, a software library for interoperable biomolecular
simulation workflows. Scientific data 6, 1 (2019), 1-8.

Apple. 2022. Environmental Progress Report. https://www.apple.com/
environment/pdf/Apple_Environmental_Progress_Report_2022.pdf

Clément Auger, Benoit Hilloulin, Benjamin Boisserie, Maél Thomas, Quentin
Guignard, and Emmanuel Roziére. 2021. Open-source carbon footprint estimator:
Development and university declination. Sustainability 13, 8 (2021), 4315.

Troy Baer, Paul Peltz, Junqi Yin, and Edmon Begoli. 2015. Integrating apache spark
into pbs-based hpc environments. In Proceedings of the 2015 XSEDE Conference:
Scientific Advancements Enabled by Enhanced Cyberinfrastructure. 1-7.

Rohan Basu Roy, Raghavendra Kanakagiri, Yankai Jiang, and Devesh Tiwari. 2025.
ForgetMeNot: Understanding and modeling the impact of forever chemicals to-
ward sustainable large-scale computing. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 9, 2 (2025), 1-26.

Rohan Basu Roy and Devesh Tiwari. 2024. Starship: Mitigating i/o bottlenecks
in serverless computing for scientific workflows. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 8, 1 (2024), 1-29.

André Bauer, Haochen Pan, Ryan Chard, Yadu Babuji, Josh Bryan, Devesh Tiwari,
Tan Foster, and Kyle Chard. 2024. The globus compute dataset: An open function-
as-a-service dataset from the edge to the cloud. Future Generation Computer
Systems 153 (2024), 558-574.

Andrea R Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele Costantino. 2013.
LiGen: a high performance workflow for chemistry driven de novo design.
Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su,
and Karan Vahi. 2008. Characterization of scientific workflows. In 2008 third
workshop on workflows in support of large-scale science. IEEE, 1-10.

Sarah B Boyd. 2011. Life-cycle assessment of semiconductors. Springer Science &
Business Media.

Zhiwei Cao, Xin Zhou, Han Hu, Zhi Wang, and Yonggang Wen. 2022. Towards a
systematic survey for carbon neutral data centers. IEEE Communications Surveys
& Tutorials (2022).

Jichuan Chang, Justin Meza, Parthasarathy Ranganathan, Amip Shah, Rocky
Shih, and Cullen Bash. 2012. Totally green: evaluating and designing servers for
lifecycle environmental impact. ACM SIGPLAN Notices 47, 4 (2012), 25-36.

Hao Chen, Yucong Dong, Xin Wen, and Zichen Xu. 2024. SwitchFlow: Optimizing
HPC Workflow Performance with Heterogeneous Serverless Frameworks. In 2024
IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS).
286-293.

United States International Trade Commission. 2021. Data Centers Around
the World: A Quick Look. https://www.usitc.gov/publications/332/executive_
briefings/ebot_data_centers_around_the_world.pdf

Marcin Copik, Marcin Chrapek, Larissa Schmid, Alexandru Calotoiu, and Torsten
Hoefler. 2024. Software Resource Disaggregation for HPC with Serverless Com-
puting. In 2024 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 139-156.

Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten Hoefler.
2023. rFaaS: Enabling High Performance Serverless with RDMA and Leases. In
2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 897-907.

Benjamin Davy. 2021. Building an AWS EC2 carbon emissions dataset. Medium,
September (2021).

W Freudling, M Romaniello, DM Bramich, P Ballester, V Forchi, CE Garcia-
Dablé, S Moehler, and MJ Neeser. 2013. Automated data reduction workflows for
astronomy-The ESO Reflex environment. Astronomy & Astrophysics 559 (2013),
A96.

Google. 2022. Google Environmental Report. https://www.gstatic.com/gumdrop/
sustainability/google-2022- environmental-report.pdf

Sriram Govindan, Anand Sivasubramaniam, and Bhuvan Urgaonkar. 2011. Bene-
fits and limitations of tapping into stored energy for datacenters. In Proceedings
of the 38th annual international symposium on Computer architecture. 341-352.
Yi Gu and Chandu Budati. 2020. Energy-aware workflow scheduling and opti-
mization in clouds using bat algorithm. Future Generation Computer Systems 113
(2020), 106-112.

Pranjol Sen Gupta, Md Rajib Hossen, Pengfei Li, Shaolei Ren, and Mohammad A

Islam. 2024. A dataset for research on water sustainability. In Proceedings of the
15th ACM International Conference on Future and Sustainable Energy Systems.

400

[27

[28

[29

[31

[32

[33

[35

[36

[37

&
&,

[39

[40

[41

[42

[43

[44

[45

(47

(48]

[49

SoCC ’25, November 19-21, 2025, Online, USA

442-446.

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: Designing sustainable computer systems
with an architectural carbon modeling tool. In ACM/IEEE ISCA. 784-799.

Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-Yeon
Wei, David Brooks, and Carole-Jean Wu. 2022. Chasing carbon: The elusive
environmental footprint of computing. IEEE Micro 42, 4 (2022), 37-47.

Leo Han, Jash Kakadia, Benjamin C Lee, and Udit Gupta. 2025. Fair-CO2: Fair attri-
bution for cloud carbon emissions. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture. 646—-663.

Walid A Hanafy, Roozbeh Bostandoost, Noman Bashir, David Irwin, Mohammad
Hajiesmaili, and Prashant Shenoy. 2024. The war of the efficiencies: Understand-
ing the tension between carbon and energy optimization. ACM SIGENERGY
Energy Informatics Review 4, 3 (2024), 87-93.

Walid A Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and Prashant Shenoy.
2023. CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing
Carbon-Efficiency. arXiv preprint arXiv:2302.08681 (2023).

Yankai Jiang, Rohan Basu Roy, Baolin Li, and Devesh Tiwari. 2024. EcoLife:
Carbon-Aware Serverless Function Scheduling for Sustainable Computing. In
SC24: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-15.

Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman, Ben-
jamin P Berman, and Phil Maechling. 2009. Scientific workflow applications on
Amazon EC2. In 2009 5th IEEE international conference on e-science workshops.
IEEE, 59-66.

Alok Kamatar, Maxime Gonthier, Valerie Hayot-Sasson, Andre Bauer, Marcin
Copik, Torsten Hoefler, Raul Castro Fernandez, Kyle Chard, and Ian Foster. 2025.
Core Hours and Carbon Credits: Incentivizing Sustainability in HPC. arXiv
preprint arXiv:2501.09557 (2025).

Daniel Kelly, Frank Glavin, and Enda Barrett. 2020. Serverless Computing: Behind
the Scenes of Major Platforms. In 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). IEEE, 304-312.

Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and
Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL for Power
measurements. ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS) 3, 2 (2018), 1-26.

Oleksiy M Kozlov and Alexandros Stamatakis. 2024. EcoFreq: compute with
cheaper, cleaner energy via carbon-aware power scaling. In ISC High Performance
2024 Research Paper Proceedings (39th International Conference). Prometeus GmbH,
1-12.

Baolin Li, Rohan Basu Roy, Daniel Wang, Siddharth Samsi, Vijay Gadepally, and
Devesh Tiwari. 2023. Toward sustainable hpc: Carbon footprint estimation and
environmental implications of hpc systems. In ACM/IEEE SC. 1-15.

Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Clover:
Toward sustainable ai with carbon-aware machine learning inference service.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-15.

Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Green
Carbon Footprint for Model Inference Serving via Exploiting Mixed-Quality
Models and GPU Partitioning. arXiv preprint arXiv:2304.09781 (2023).

Weiling Li, Yunni Xia, Mengchu Zhou, Xiaoning Sun, and Qingsheng Zhu.
2018. Fluctuation-aware and predictive workflow scheduling in cost-effective
infrastructure-as-a-service clouds. IEEE Access 6 (2018), 61488-61502.
Zhengchun Liu, Ryan Lewis, Rajkumar Kettimuthu, Kevin Harms, Philip Carns,
Nageswara Rao, Ian Foster, and Michael E Papka. 2020. Characterization and
identification of HPC applications at leadership computing facility. In Proceedings
of the 34th ACM International Conference on Supercomputing. 1-12.

Romain Lorenzini. 2021. Digital & environment: How to evaluate server manufac-
turing footprint, beyond greenhouse gas emissions? https://www.boavizta.org/en/
blog/empreinte-de-la-fabrication-d-un-serveur

Diptyaroop Maji, Prashant Shenoy, and Ramesh K Sitaraman. 2022. CarbonCast:
multi-day forecasting of grid carbon intensity. In Proceedings of the 9th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation. 198-207.

Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian
Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel,
Mark Daly, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome research 20, 9
(2010), 1297-1303.

Paul Messina. 2017. The exascale computing project. Computing in Science &
Engineering 19, 3 (2017), 63-67.

Meta. 2021. Meta Sustainability Report. https://sustainability.fb.com/wp-content/
uploads/2022/06/Meta-2021-Sustainability-Report.pdf

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. 2019. Agile cold starts for scalable serverless. In 11th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 19).
Panayiotis Neophytou, Roxana Gheorghiu, Rebecca Hachey, Timothy Luciani, Di
Bao, Alexandros Labrinidis, Elisabeta G Marai, and Panos K Chrysanthis. 2012.

https://watttime.org/
https://sustainability.aboutamazon.com/2021-sustainability-report.pdf
https://sustainability.aboutamazon.com/2021-sustainability-report.pdf
https://www.apple.com/environment/pdf/Apple_Environmental_Progress_Report_2022.pdf
https://www.apple.com/environment/pdf/Apple_Environmental_Progress_Report_2022.pdf
https://www.usitc.gov/publications/332/executive_briefings/ebot_data_centers_around_the_world.pdf
https://www.usitc.gov/publications/332/executive_briefings/ebot_data_centers_around_the_world.pdf
https://www.gstatic.com/gumdrop/sustainability/google-2022-environmental-report.pdf
https://www.gstatic.com/gumdrop/sustainability/google-2022-environmental-report.pdf
https://www.boavizta.org/en/blog/empreinte-de-la-fabrication-d-un-serveur
https://www.boavizta.org/en/blog/empreinte-de-la-fabrication-d-un-serveur
https://sustainability.fb.com/wp-content/uploads/2022/06/Meta-2021-Sustainability-Report.pdf
https://sustainability.fb.com/wp-content/uploads/2022/06/Meta-2021-Sustainability-Report.pdf

SoCC ’25, November 19-21, 2025, Online, USA

[50

[51]

[52]

[53]

[54]

[55]

[56

[57]

[58]

[63]

Astroshelf: understanding the universe through scalable navigation of a galaxy
of annotations. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. 713-716.

Bill Nitzberg, Jennifer M Schopf, and James Patton Jones. 2004. PBS Pro: Grid
computing and scheduling attributes. In Grid resource management: state of the
art and future trends. Springer, 183-190.

Kary Ocaiia, Silvia Benza, Daniel De Oliveira, Jonas Dias, and Marta Mattoso.
2014. Exploring large scale receptor-ligand pairs in molecular docking work-
flows in HPC clouds. In 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops. IEEE, 536-545.

Michael E Papka, Jini Ramprakash, Robert Scott, Doug Waldron, Adrian Pope,
Aditya Tanikanti, Dana Silvestri, Jeffrey Neel, Laura Wolf, Avanthi Mantrala,
et al. 2023. 2022 Operational Assessment Report-Argonne Leadership Computing
Facility. Technical Report. Argonne National Laboratory (ANL), Argonne, IL
(United States).

Elaina Present, Pieter Gagnon, Eric JH Wilson, Noel Merket, Philip R White,
and Scott Horowitz. 2024. Choosing the best carbon factor for the job: Exploring
available carbon emissions factors and the impact of factor selection. Technical
Report. National Renewable Energy Laboratory (NREL), Golden, CO (United
States).

Rohan Basu Roy, Raghavendra Kanakagiri, Yankai Jiang, and Devesh Tiwari. 2024.
The Hidden Carbon Footprint of Serverless Computing. In Proceedings of the 2024
ACM Symposium on Cloud Computing. 570-579.

Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. 2022.
Mashup: making serverless computing useful for HPC workflows via hybrid
execution. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 46-60.

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. DayDream: executing
dynamic scientific workflows on serverless platforms with hot starts. In SC22:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1-18.

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: warming
serverless functions better with heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 753-767.

Amit Samanta, Faraz Ahmed, Lianjie Cao, Ryan Stutsman, and Puneet Sharma.
2023. Persistent memory-aware scheduling for serverless workloads. In 2023 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
615-621.

Amit Samanta and Ryan Stutsman. 2024. Fair, Efficient Multi-Resource Scheduling
for Stateless Serverless Functions with Anubis. In 2024 IEEE 24th International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). 106-112.

Greg Schulz. 2011. Cloud and virtual data storage networking. CRC Press.
Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inés Azevedo, and William
Lintner. 2016. United states data center energy usage report. (2016).

Ana Luisa Veroneze Solérzano, Kento Sato, Keiji Yamamoto, Fumiyoshi Shoji,
Jim M Brandt, Benjamin Schwaller, Sara Petra Walton, Jennifer Green, and Devesh
Tiwari. 2024. Toward Sustainable HPC: In-Production Deployment of Incentive-
Based Power Efficiency Mechanism on the Fugaku Supercomputer. In SC24:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1-16.

Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David
Irwin, and Prashant Shenoy. 2023. Ecovisor: A virtual energy system for carbon-
efficient applications. In Proceedings of the 28th ACM International Conference on

401

[64

[65

[66

o
=

[68

[69

[70

(71

3
S

[73

(74

[75]

=
2

[77

A. Samanta et al.

Architectural Support for Programming Languages and Operating Systems, Volume
2. 252-265.

Markus Stutz, Scott O’Connell, and John Pflueger. 2012. Carbon footprint of a
dell rack server. In 2012 Electronics Goes Green 2012+. IEEE, 1-5.

Estela Suarez, Jorge Amaya, Martin Frank, Oliver Freyermuth, Maria Girone,
Bartosz Kostrzewa, and Susanne Pfalzner. 2025. Energy Efficiency trends in
HPC: what high-energy and astrophysicists need to know. arXiv preprint
arXiv:2503.17283 (2025).

Thanathorn Sukprasert, Noman Bashir, Abel Souza, David Irwin, and Prashant
Shenoy. 2024. On the Implications of Choosing Average versus Marginal Carbon
Intensity Signals on Carbon-aware Optimizations. In Proceedings of the 15th ACM
International Conference on Future and Sustainable Energy Systems. 422-427.
Vijay Thurimella, Philipp Raith, Rolando P. Hong Enriquez, Anderson Andrei
Da Silva, Gourav Rattihalli, Ada Gavrilovska, and Dejan Milojicic. 2024. Serverless
Computing for Dynamic HPC Workflows. In SC24-W: Workshops of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 2096-2103.

Amandeep Verma and Sakshi Kaushal. 2017. A hybrid multi-objective particle
swarm optimization for scientific workflow scheduling. Parallel Comput. 62
(2017), 1-19.

Laurens Versluis, Erwin Van Eyk, and Alexandru Iosup. 2018. An analysis of
workflow formalisms for workflows with complex non-functional requirements.

In Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering. 107-112.

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift.
2018. Peeking behind the curtains of serverless platforms. In 2018 { USENLX}
Annual Technical Conference ({USENIX} { ATC} 18). 133-146.

Christian Wassermann, Mario Bielert, Gert Vanberg, Daniel Hackenberg, Chris-
tian Terboven, and Matthias S Miiller. 2024. Calculating User-Centric Carbon
Footprints for HPC. In 2024 IEEE International Conference on Cluster Computing
Workshops (CLUSTER Workshops). IEEE, 26-35.

Christian Wassermann, Mario Bielert, Gert Vanberg, Daniel Hackenberg, Chris-
tian Terboven, and Matthias S. Miiller. 2024. Calculating User-Centric Carbon
Footprints for HPC. In 2024 IEEE International Conference on Cluster Computing
Workshops (CLUSTER Workshops). 26-35.

WattTime. 2024. The methodology behind our latest global data expansion - Watt-
Time — watttime.org. https://watttime.org/news-and-insights/the-methodology-
behind- our-latest-global-data-expansion/.

Bin Yang, Hao Wei, Wenhao Zhu, Yuhao Zhang, Weiguo Liu, and Wei Xue. 2024.
Full lifecycle data analysis on a large-scale and leadership supercomputer: what
can we learn from it?. In 2024 USENIX Annual Technical Conference (USENIX ATC
24). 917-933.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on job scheduling strategies for
parallel processing. Springer, 44—60.

Shuai Zeng, Zhen Lyu, Siva Ratna Kumari Narisetti, Dong Xu, and Trupti Joshi.
2018. Knowledge Base Commons (KBCommons) v1. 0: A multi OMICS web-based
data integration framework for biological discoveries. In 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 589-594.
Zhaomeng Zhu, Gongxuan Zhang, Miging Li, and Xiaohui Liu. 2015. Evolutionary
multi-objective workflow scheduling in cloud. IEEE Transactions on parallel and
distributed Systems 27, 5 (2015), 1344-1357.

https://watttime.org/news-and-insights/the-methodology-behind-our-latest-global-data-expansion/
https://watttime.org/news-and-insights/the-methodology-behind-our-latest-global-data-expansion/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design and Implementation
	3.1 Objectives and Overview
	3.2 GridGreen's Design Components
	3.3 Implementation and Integration

	4 Experimental Methodology
	5 Evaluation
	5.1 Effectiveness of GridGreen
	5.2 Reasons Behind GridGreen's Effectiveness
	5.3 Robustness of GridGreen

	6 Discussion on Future Directions
	7 Related Work
	8 Conclusion
	References

