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Abstract
Rising computational demands have made cloud datacenters’ wa-
ter footprint a critical concern. We demonstrate how different water
footprint accounting methodologies – incorporating operational, man-
ufacturing, and decommissioning water consumption, impact mea-
surements and highlight the need for methodology standardization
for water-aware operations. Our analysis reveals opportunities for
water-aware scheduling in datacenters by considering regional water
variations and lifecycle impacts.
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1 Introduction
Why is the water footprint of large-scale cloud computing
systems an increasing concern? The rapid growth of compute-
intensive workloads including generative AI [13], molecular mod-
eling [49], and climate simulation [7] has increased demand for
computational resources. Recent projections indicate that datacen-
ter electricity consumption could reach 1,000 terawatt-hours by
2026 – roughly equivalent to Japan’s total electricity demand [50].
While carbon footprint has received substantial attention in sus-
tainable computing research [8, 21, 22, 28], the water consumption
of computing infrastructure remains under-explored. Modern data-
centers consume vast quantities of water both directly for cooling
and indirectly through electricity generation – with facilities like
Frontier (Oak Ridge National Laboratory, USA) consuming approx-
imately 3.2 billion gallons annually [9]. Moreover, datacenters are
distributed across regions with varying water scarcity levels, where
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Figure 1: Water footprint sources in datacenters: water loss
during operational (on-site cooling and off-site electricity
generation), manufacturing, and decommissioning phases.

computational water demands can exacerbate existing resource
stress and compete with basic human needs [48].
Sources of datacenter water footprint. Datacenter water con-
sumption occurs across the entire hardware lifecycle through four
distinct pathways (Fig. 1). On-site operational water is consumed via
evaporative cooling in datacenter cooling towers, while off-site op-
erational water is used during electricity generation at power plants
– varying significantly by energy source [20, 24]. Manufacturing
embodied water includes ultrapure water for semiconductor fab-
rication, component assembly processes, and indirect usage from
supply chain activities [25]. Hardware decommissioning water, previ-
ously overlooked in water footprint studies, arises from end-of-life
recycling (leaching/rinsing), incineration (quench water), and land-
filling (leachate management) processes. While operational water
consumption is continuous, manufacturing and decommissioning
represent one-time impacts. As we demonstrate (Sec. 4), decom-
missioning and manufacturing embodied water footprint can be
substantial and can significantly influence water-aware schedul-
ing decisions – this adds another dimension to the growing water
sustainability challenge in computing infrastructure.
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Need for standardizedwater footprint accounting.Cloud providers
have started to report carbon footprints of application execution [3].
There have been carbon accounting standardization efforts [45] to
enable fair attribution [23], helping users understand their envi-
ronmental impact as a step toward carbon-aware execution and
scheduling. Yet, to the best of our knowledge, no existing method-
ology performs similar water footprint accounting, capturing all
four components of water consumption: on-site operational, off-site
operational, manufacturing embodied, and decommissioning water
footprints. The vision of this paper is to bridge this gap.
In summary, we make the following contributions:
1. We present multiple water footprint accounting methodolo-

gies for datacenter application execution, capturing on-site
operational, off-site operational, manufacturing embodied, and
decommission/ end-of-life water footprint (Sec. 2).

2. We demonstrate that different accountingmethodological choices
can significantly alter measured water consumption (Sec. 4).

3. We demonstrate how to measure application water footprints
using open-source tools and public datasets under various
accounting methodologies (Sec. 3).

4. We identify opportunities to leverage spatio-temporal varia-
tions in water and carbon-related factors for sustainable sched-
uling and datacenter infrastructure planning (Sec. 4 and Sec. 5)
.We present these accounting choices not as definitive solutions but

as a foundation for community discourse on water footprint stan-
dardization. Next, we show how different methodologies account
for various water consumption components in datacenters.

2 Different Methodologies for Accounting
Water Footprint

This section presents methodologies for accounting for the wa-
ter footprint of datacenter application execution. It progressively
refines the water model from a simple to a comprehensive water
usage model. We discuss six accounting methodologies, covering
sources of water consumption and their attribution to applications.
We start with an additive approach with on- and off-site water con-
sumption, and then progressively introduce water scarcity factors,
regional differentiation, embodied water, infrastructure allocation,
and hardware decommissioning impacts. Each methodology builds
on the previous, showing how choices impact footprints and the
need for standardization.

Next, we provide brief definitions of some of the terms for easier
understanding of the methodologies. They are listed below: (a)Wa-
ter scarcity is the lack of sufficient available fresh water resources
to meet demand in a specific region, (b) Wet-bulb temperature is
the lowest temperature air can reach through evaporative cooling,
(c) Water intensity refers to the amount of water consumed or
withdrawn per unit of production.

2.1 Methodology 1: Additive Accounting of
On-site and Off-site Water Footprint

Water consumption during application execution occurs through
two distinct pathways [31]. On-site water consumption refers to the

water evaporated and discharged at the datacenter for cooling com-
puting equipment. This is quantified usingWater Usage Effectiveness
(WUE), which measures the liters of water required to dissipate
heat per kilowatt-hour of energy consumed (lower values indicate
greater water efficiency). WUE varies with the wet bulb temperature
at the datacenter location: hotter and more humid climates drive
higher water use for cooling, while cooler regions enable more effi-
cient water usage. Some facilities employ air cooling to minimize
water use, though this often increases energy consumption.

Off-site water consumption arises at power generation facilities
supplying electricity to the datacenter. This depends on the Energy
Water Intensity Factor (EWIF), which measures the liters of water
required to produce one kilowatt-hour (L/kWh) of electricity. EWIF
varies widely across energy sources: sources like wind and solar
generally have low water requirements, while geothermal, hydro,
coal, and nuclear energy can be highly water-intensive depending
on their cooling technologies. The regional EWIF also fluctuates
over time as the grid shifts between energy sources to meet demand.
As a result, the off-site water footprint is impacted by energy mix
and temporal grid dispatch patterns.

The energy consumption 𝐸 of an application execution results
in on-site and off-site water consumption. This energy is measured
via hardware counters (e.g., RAPL). In multi-tenant environments,
application-level energy attribution requires resource utilization
metrics. The total facility energy exceeds computing equipment
energy by a factor, Power Usage Effectiveness (PUE), which accounts
for cooling, power distribution losses, and other infrastructure
overhead. This results in an additive water footprint modeling (𝑊1),
as shown below:

𝑊1 =𝑊on-site +𝑊off-site = 𝐸 × WUE + 𝐸 × PUE × EWIF (1)

On-site Off-site

While simple, this model treats all water consumption uniformly,
ignoring variations in regional water availability.

2.2 Methodology 2: Water Scarcity-Weighted
Accounting

Water consumption in drought-stricken regions imposes a far greater
environmental burden than equivalent consumption inwater-abundant
areas. TheWater Scarcity Factor (WSF) provides a coefficient that
captures regional water stress, ranging from near zero in water-rich
regions to values exceeding 1.0 in severely water-stressed areas [25].

𝑊2 = 𝐸 × WUE × WSF + 𝐸 × PUE × EWIF × WSF (2)

On-site w/ Scarcity Off-site w/ Scarcity

An alternative approach to incorporating WSF uses an additive
rather factor:

𝑊2Alt = 𝐸 × WUE × (1 +WSF) + 𝐸 × PUE × EWIF × (1 +WSF) (3)

Scarcity-Weighted On-site Scarcity-Weighted Off-site

This formulation ensures that even in regions with low scarcity
(WSF approaching zero), the volumetric water consumption re-
mains in the accounting. The choice between multiplicative and
additive weighting reflects different approaches to environmen-
tal impact assessment—whether water consumption in abundant
regions should be considered negligible or merely less impactful.
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Note that this formulation applies the same WSF to both on-
site and off-site water consumption, implicitly assuming that the
datacenter and its electricity sources exist in the same water basin.

The𝑊2 method emphasizes environmental impact by scaling
water use with the Water Scarcity Factor (WSF), making it ideal for
high-scarcity regions.𝑊2Alt ensures that actual water use is counted
and is suitable for low-scarcity regions.

2.3 Methodology 3: Accounting Differentiated
Water Scarcity

Modern electricity grids aggregate power from geographically dis-
tributed generation facilities, each situated in regions with varying
water availability. As a result, theWSF at the location of the datacen-
ter (affecting on-site water footprint) can be different from the WSF
of the power plant location (affecting off-site water footprint) [20].

𝑊3 = 𝐸 × WUE × WSFlocal + 𝐸 × PUE × EWIF × WSFgrid (4)

On-site w/ Local Scarcity Off-site w/ Grid Scarcity

Here, WSFlocal adjusts for water scarcity at the datacenter’s
location, and it reflects the local impact of direct water use for cool-
ing. WSFgrid accounts for the weighted-average water stress across
all power plants supplying electricity to the grid region, reflecting
the indirect upstream water scarcity for energy generation. This
differentiation shows that optimizing local (on-site) water use may
transfer water stress to grid-level generation regions (off-site). How-
ever, these methodologies assume that the entire server’s energy
consumption can be attributed to a single application, which fails to
reflect the reality of modern datacenter operations where multiple
applications share computational resources.

2.4 Methodology 4: Attributing Multi-Tenant
Resource Allocations

Modern datacenters run multiple applications concurrently on
shared servers, with co-locatedworkloads competing for CPU,mem-
ory, and accelerators. Since energy is supplied at the server level
via power supplies and voltage regulators, direct per-application
energy measurement is infeasible. Attribution mechanisms are thus
required to divide server-level water consumption among applica-
tions. Existing tools like Intel’s RAPL (for CPU and DRAM) provide
package-level energy counters but cannot separate the energy used
by individual processes. Hence, a server’s total energy consumption
𝐸server needs to be apportioned across all active workloads.

A practical approximation, adopted in previous carbon footprint
accounting methodologies, divides energy based on resource utiliza-
tion [45]. For an application utilizing a fraction

Compute cyclesapp
Compute cyclestotal

of
the server’s total compute cycles (or equivalent accelerator compute
time), the attributed water is:

𝑊4 = 𝐸server ×
Compute cyclesapp
Compute cyclestotal

× WUE × WSFlocal

+ 𝐸server ×
Compute cyclesapp
Compute cyclestotal

× PUE × EWIF × WSFgrid

(5)

On-site considering multi-tenant

Off-site considering multi-tenant

This formulation assumes power scales linearly with utilization,
which is reasonable for compute-intensive workloads but may over-
estimate energy for memory- or I/O-bound applications. Despite
this limitation, proportional attribution provides a more equitable
basis for comparing the water footprint of co-located applications
and supports optimization in shared environments.

Observation

The water footprint of an application execution includes on-site
water use for cooling and off-site use from grid energy genera-
tion. Both are influenced by regional water scarcity, as regional
differences in water availability mean the environmental impact of
water use is not uniform across regions. In multi-tenant datacenter
environments, shared resources make it harder to attribute water
use to individual applications, giving rise to various approaches
for accounting for the water footprint.

2.5 Methodology 5: Considering Manufacturing
Embodied Water Footprint

The previous methodologies account only for operational water
footprint during datacenter application execution. However, the
servers, storage systems, and networking equipment used to run
these applications also carry a significant water footprint from
their manufacturing processes. Similar to embodied carbon, this
footprint arises from both direct and indirect water use during
hardware production [25, 31]. Direct water use includes semicon-
ductor fabrication (where ultrapure water is extensively used to
rinse silicon wafers), printed circuit board assembly, and metal
refining for components such as chassis and heat sinks. Indirect
water use stems from the operation of manufacturing facilities
themselves, such as the water required for transportation, and
for generating electricity and cooling at semiconductor fabs and
assembly plants [4]. Although incurred once during production,
this manufacturing water footprint should be amortized over the
hardware’s operational lifetime and attributed proportionally to all
applications executed on the system (similar to embodied carbon
footprint accounting) [26, 29, 45], as the embodied footprint reflects
the hardware’s performance capabilities and revenue generation
potential.

𝑊5 = 𝐸server ×
Compute cyclesapp
Compute cyclestotal

× WUE × WSFlocal

+ 𝐸server ×
Compute cyclesapp
Compute cyclestotal

× PUE × EWIF × WSFgrid

+ 𝑊manufacturing ×
𝑡execution
𝑡lifetime

(6)

Operational On-site

Operational Off-site

Manufacturing Embodied

Here,𝑊manufacturing represents the total water consumed during
production, from raw material extraction to final assembly. For
modern servers, this can range from 5,000 to 15,000 liters depending
on component complexity and manufacturing location [25]. The
temporal allocation factor 𝑡execution

𝑡lifetime
distributes this footprint across

applications proportionally to their execution duration (𝑡execution),
assuming uniform hardware utilization over its lifetime (𝑡lifetime).
Workload co-location complicates fair allocation since resources
aren’t exclusively dedicated to individual applications.
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2.6 Methodology 6: Lifecycle Water Footprint
Considering Hardware Decommissioning

Existing studies typically account for the embodied water footprint
during manufacturing and the water used during operation but
omit impacts arising at the end-of-life (EoL) or decommissioning
stage [24, 25, 31]. This omission occurs because the methodology
used in prior work for calculating the embodied water footprint
involves first estimating the manufacturing embodied carbon and
then converting it to water use by multiplying the associated man-
ufacturing energy with the regional EWIF and applying a local
WSF for adjustment [25]. However, hardware decommissioning
contributes to additional water consumption for treating water-
intensive materials such as precious metals and PCBs [34]. Includ-
ing EoL/ decommission water use captures trade-offs in hardware
refresh cycles and design choices.

Servers, switches, storage shelves, and accelerator cards leave
the IT floor in large refresh cycles (typically every 3 - 5 years). Once
removed, each device is routed through three mutually–exclusive
EoL pathways: (a) recycling –materials are shredded, separated, and
chemically processed to recover metals and polymers; (b) incinera-
tion – combustible fractions are burned for energy recovery with
flue-gas scrubbing; and (c) landfilling – non-recyclable residues
are sent to engineered landfills. All three routes consume water:
mechanical size-reduction uses spray nozzles for dust control; hy-
drometallurgical extraction of precious metals relies on rinse and
leach solutions; incinerators require quench water and wet scrub-
bers; landfills need periodic irrigation to suppress particulates and
manage leachate [39, 42]. To remain consistent with life-cycle as-
sessment (LCA) practice, we express these flows as process-specific
water intensities (litres per kg of processed material). Summing over
the material bill of a server yields the decommissioning term.

𝑊decommission =
∑︁

𝑚∈Materials
𝑀𝑚

(
𝑅𝑚𝑊recycle,𝑚 + 𝐼𝑚𝑊incinerate,𝑚

+ 𝐿𝑚𝑊landfill,𝑚
) (7)

𝑀𝑚 is the mass of material𝑚 in a server, 𝑅𝑚 , 𝐼𝑚 , and 𝐿𝑚 are the
fractional shares of that material routed to recycling, incineration,
and landfill, respectively (𝑅𝑚 + 𝐼𝑚 + 𝐿𝑚 = 1), and𝑊process,𝑚 are
material-specific water intensities obtained from LCI disclosures.
Complete life-cycle expression. Adding Eq. (7) to𝑊5 gives a closed-
form footprint for an application execution:

𝑊6 = 𝐸server ×
Compute cyclesapp
Compute cyclestotal

× WUE × WSFlocal

+ 𝐸server ×
Compute cyclesapp
Compute cyclestotal

× PUE × EWIF × WSFgrid

+ 𝑊manufacturing ×
𝑡execution
𝑡lifetime

+ 𝑊decommission × 𝑡execution
𝑡lifetime

(8)

Operational On-site

Manufacturing Embodied Decommission

The factor 𝑡execution
𝑡lifetime

amortizes one-time (manufacturing + decom-
mission) impacts over the server’s useful life. As shown in Sec. 4,
decommission water footprint is substantial due to water-intensive
processes like hydrometallurgical recovery of precious metals and
PCB recycling [30, 39]. Neglecting𝑊decommission biases comparisons
between hardware generations with different material composi-
tions or datacenter designs with varying refresh cycles. Including it

aligns with embodied carbon accounting best practices [21, 29, 45]
and enables consistent evaluation of end-of-life strategies.

Observation

Water footprint accounting should extend beyond operational use
to include hardware manufacturing and decommissioning impacts.
Manufacturing contributes significant water use through semicon-
ductor fabrication and facility operations, while decommissioning
adds further consumption via recycling, incineration, and land-
filling processes. Allocating these one-time footprints fairly across
applications is challenging in shared environments and introduces
new complexities, thus requiring the need to develop approaches
for capturing the full lifecycle water footprint.

Why is decommissioning water footprint important? Decom-
missioning at the end of its lifecycle plays a pivotal role in the
overall environmental footprint of computing systems, as effec-
tive recycling and recovery strategies can dramatically reduce the
demand for raw material extraction. However, decommissioning
processes themselves, including mechanical shredding to separate
components, high-temperature smelting to recover metals, and
chemical leaching for material purification, are resource-intensive
and consume substantial volumes of water, contributing to fresh-
water scarcity in water-stressed regions. Furthermore, improper
disposal methods, such as landfilling without pretreatment, pose
severe risks of long-term water contamination through leachates.

Methods Applicability. The methods (𝑊1 to𝑊5) focus on partial
lifecycle aspects (e.g., operational water, embodied water, etc.) to
allow users with specific goals (e.g., optimizing on-site water foot-
print with water scarcity) to assess water impacts without needing
full lifecycle data. For example, a datacenter manager with only
on-site water footprints with water scarcity can use𝑊2 to estimate
operational water without material composition details. Whereas
𝑊6 provides a more accurate and actionable water footprint com-
pared to partial methods, as it considers all aspects of the water
footprint. This model can be adapted for servers running multiple
applications, and it is needed for a more comprehensive assessment
of water footprint.

Next, we discuss measuring water footprint parameters using
publicly available data and tools.

3 Water Footprint Measurement
Measuring on-site and off-site water footprint. Both on-site
and off-site water footprints are calculated based on the datacen-
ter’s energy consumption (𝐸). For CPU and DRAM, Intel RAPL [15]
interface reports the energy usage of CPU and DRAM packages by
obtaining the number provided by the MSR registers. The energy
contribution of the storage device is minimal compared to CPU
and DRAM [37]. The Water Usage Effectiveness (WUE), which im-
pacts on-site water footprint, is a function of the outside wet bulb
temperature [20, 25, 31], which in turn depends on the dry bulb
temperature and ambient humidity. The wet bulb temperature is
of various datacenter regions is available in Meteologix [38]. The
Power Usage Effectiveness (PUE) reflects a datacenter’s architec-
tural design and energy optimization practices, and is defined as
the ratio of total facility energy to IT-equipment energy. In our
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experiments, we use 1.2 for the PUE, which is typical in datacen-
ters [47]. The Energy Water Intensity Factor (EWIF) is determined
by the energy mix used in the power grid, collected from Electricity
Map [36]. The individual values of EWIF of different energy sources
are obtained from a widely-used open-source dataset [32, 33]. Re-
gional EWIF is computed as the weighted sum of the individual
EWIFs of each energy source. The water footprint is then scaled by
the Water Scarcity Factor (WSF), using county-wise data [5, 27].
Measuring manufacturing embodied water footprint. The
manufacturing embodied water footprint represents water con-
sumption during server design, manufacturing, and transportation,
amortized over the hardware’s lifespan of four or five years [19].
Following the same methodology as prior work in this space [25]
we measure it by first collecting the server’s embodied carbon foot-
print [10, 16], multiplying by the manufacturing location’s carbon
intensity to derive energy consumption, then applying the Energy
Water Intensity Factor (EWIF) and water scarcity factor (WSF). This
approach yields similar values to industry reports, as vendors like
Lenovo [2] and Seagate [6] publish embodied water footprint data
for components. Additionally, embodied water footprint can be ap-
proximated based on die area and fabrication node size, consistent
with prior work’s [25] energy-based methodology that we follow.
Transportation water usage, which counts toward manufacturing
embodied water footprint, is estimated using transport distance,
fuel, and truck water usages [41, 44].
Measuring decommission water footprint. To measure the wa-
ter footprint of decommission, we use a detailed assessment of water
consumption associated with end-of-life processes, which includes
recycling, landfilling, incineration, transportation, and material pre-
processing, as depicted in𝑊6 (Sec. 2). The recycling water usage is
calculated for each material (aluminum, paper, plastic, glass, etc.)
using its mass and incorporating water savings from recycling as
reported by WasteTrade [52] and other public sources [18, 51]. For
landfilling, we incorporate the leachate management and dust sup-
pression water usage [46]. The incineration process includes the ash
quenching, which is available through European Commission, JRC
Technical Reports [35], and scrubber water usage available through
U.S. Environmental Protection Agency (EPA) report [40]. We collect
material composition of servers to determine the decommission
water footprint from server lifecycle assessment reports [1].

Using the water footprint accounting methodologies and mea-
surement sources, we next analyze how methodological choices
impact results and discuss water consumption reduction strategies.

4 Implications of Methodologies and Water
Footprint Analysis

In this section, we first show that different methodological choices
result in significantly different measured water footprints, and then
discuss scheduling opportunities to reduce water consumption.
Differences inmeasuredwater footprint using differentmethod-
ologies. In Sec. 2, we discussed the different methodological choices
to determine the water footprint of a datacenter application exe-
cution (𝑊1 to𝑊6). For the evaluation, we study six different types
of applications from the CloudSuite benchmark suite [17]. For ex-
ample, Media streaming’s I/O is really high as it relies on constant
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Figure 2: Depending on the chosen methodology, the total
water footprint and the individual contributions from on-
site, off-site, manufacturing embodied and decommission
water footprint vary significantly.
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Figure 3: The water footprint of different applications varies
depending on the execution time and energy consumption.

data transfer. Graph analytics’s CPU usage is really high, due to
complex algorithms (e.g., PageRank, shortest path) requiring inten-
sive computation. Fig. 2 shows that these methodologies result in
significantly different water footprint measurement for an example
application (memory analytics from CloudSuite [17]), which has a
8060.822 J of energy consumption, running on an Intel Xeon Plat-
inum Scalable server with 48 physical cores in a datacenter at Santa
Clara, California on June 2025. Since the datacenter is located in a
relatively water-stressed region, due to high WSF (> 1), both on-site
and off-site water footprint increases using𝑊2 compared to𝑊1.
Using𝑊2Alt , the water footprint further increases as water scarcity
is considered with (1+WSF) as a multiplicative factor instead of just
WSF in𝑊2. Considering different WSFgrid and WSFlocal causes the
water footprint using𝑊3 to be slightly different than the one using
𝑊2. Since𝑊4 accounts only for the fraction of the server’s energy
proportional to the application’s compute cycles relative to total
compute cycles (excluding idle energy and co-located workloads),
both off-site and on-site water footprints of the application exe-
cution decrease compared to𝑊3. Manufacturing embodied water
footprint contributes to a significant increase in the total water
footprint of the application using𝑊5. Finally, considering decom-
mission water footprint further increases the total water footprint
for the application execution.

Following𝑊6, in Fig. 3 we show the water footprint of differ-
ent applications from CloudSuite [17] and Parsec [11] benchmark
suites, executed under the same WUE, EWIF, and WSF conditions
on the same Intel Xeon Platinum Scalable server. The water foot-
print varies depending on the energy consumption (affecting on-site
and off-site water footprint) of the application and the execution
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Figure 4: Water footprint of an application execution varies
spatio-temporally due to variations in EWIF, WUE, andWSF.

time (affecting decommission and manufacturing embodied carbon
footprint). Thus, application-level water footprint depends on hard-
ware, location, and workload execution characteristics, requiring
system-level optimizations for water-aware datacenter operations.

Observation

Different accounting methodologies can yield vastly different wa-
ter footprints for the same application execution, underscoring the
need for standardized approaches to enable fair comparisons and
guide effective reduction strategies. Manufacturing embodied wa-
ter footprints can be substantial and can even exceed operational
footprints. Unlike carbon, where decommissioning impacts can
be relatively small [1], decommissioning water footprint can be
significant due to water-intensive recycling and disposal processes.

Next, we discuss how we can leverage spatio-temporal charac-
teristics of water-related parameters to reduce the water footprint
of application execution in datacenters.
Spatio-temporal variation of water footprint. EWIF varies
across regions with the energy mix and over time as grids shift
generation sources. WUE depends on local climate and fluctuates
with temperature and humidity, causing regional and seasonal vari-
ation in on-site water use [20]. In contrast, WSF remains stable over
time but differs significantly across regions (e.g., 0.681 in California,
and 0.197 in Michigan), reflecting variations in water availability.
These factors make the total water footprint of an application on
the same server type vary spatially and temporally, as shown in
Fig. 4. This figure shows the water footprint of a CloudSuite media
streaming application across different days in June 2025 (𝑇1–𝑇5) and
datacenter locations on identical Intel Xeon Scalable servers.

Such spatio-temporal dynamics enable water-aware schedulers
to optimize application placement. Workloads can shift between
datacenters to avoid periods or regions with high EWIF/WUE or
be deferred locally to exploit low water-use intervals. Latency-
tolerant jobs can align with favorable water conditions, while
latency-sensitive ones are prioritized. These variations can guide
schedulers to dynamically route or defer tasks based on water foot-
print profiles and QoS constraints. Note that embodied and decom-
missioning water footprints remain constant post-deployment and
do not vary spatially or temporally. In addition to water footprint,
carbon footprint from grid carbon intensity (CI) is a key sustainabil-
ity metric [21, 22], but minimizing water use may not align with
carbon reduction goals. Next, we discuss the reasons for this.
Focusing solely on minimizing water footprint can risk in-
creasing another key sustainability metric, carbon footprint.
Carbon footprint, expressed in grams of 𝐶𝑂2, includes operational
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Figure 5: Greener energy sources (low CI) can have higher
water footprint (high EWIF) and vice-versa.
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Figure 6: There is a trade-off betweenminimizing carbon and
water footprints that joint optimization can balance.

emissions (energy consumption multiplied by the grid’s carbon in-
tensity, CI) and embodied emissions from hardware manufacturing,
amortized over its lifetime. Since CI varies across grids and over
time with shifting energy sources, operational carbon footprint
exhibits spatio-temporal variation – renewables like wind and solar
have low CI, while fossil fuels like coal and oil have high CI.

However, low-CI sources are not always water-efficient (i.e., low
EWIF). As shown in Fig. 5, geothermal and hydroelectric power have
low CI but high EWIF because geothermal relies on water-intensive
cooling systems, and hydroelectric dams lose water through evapo-
ration, which cannot be recovered. This mismatch creates tension
for sustainability-aware schedulers: minimizing carbon footprint
may increase water use and vice versa. Joint optimization requires
balancing these trade-offs, especially when deferring workloads or
shifting them across regions with different CI and EWIF profiles.

To demonstrate the trade-offs between minimizing carbon and
water footprints, we design an experiment where applications
(shown in Fig. 3) are invoked periodically for an hour across all re-
gions shown in Fig. 4, with five Intel Xeon Platinum Scalable servers
in each location. Fig. 6 shows the results. The carbon-optimized
scheduler (Carbon-Opt) assigns workloads to regions with the low-
est carbon intensity (CI), filling each datacenter before moving to
the next lowest CI region. The water-optimized scheduler (Water-
Opt) selects regions with the lowest total water footprint, similarly
filling each before moving to the next. Joint optimization (Joint-Opt)
balances both metrics by weighting carbon and water footprints
equally in the placement decision. It achieves a middle ground: it
improves water footprint by 2.08% over Carbon-Opt and reduces
carbon footprint by 2.55% compared to Water-Opt. The Round
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Robin scheduler, which cycles through datacenter regions without
considering sustainability metrics, performs worse on both axes.

Observation

Water footprint varies significantly across regions and time due
to variations in EWIF, WUE, and WSF, creating opportunities for
spatio-temporal scheduling. However, optimizing solely for wa-
ter can increase carbon footprint, underscoring the need for joint
optimization to balance these different sustainability goals.

Next, we discuss recommendations and best practices for data-
center operators to perform water-aware operations.

5 Discussion on Sustainable Operation

Grid-Aware infrastructure and lifecycle planning. The re-
gional variations in grid composition and climate conditions re-
vealed can enable strategic infrastructure decisions. Datacenters
should prioritize locations where the grid relies on truly water-
efficient renewables (solar, wind) rather thanwater-intensive sources
like hydroelectric or geothermal, which despite low carbon emis-
sions, can have EWIF values exceeding fossil fuels. This grid-aware
site selection, combined with lifecycle planning that schedules hard-
ware decommissioning during wet seasons and routes e-waste to
water-abundant recycling facilities, can significantly reduce peak
water stress. Deploying efficient processors in water-scarce regions
while extending older hardware lifecycles in water-abundant areas
can optimize the performance-water trade-off.

Dynamic workload orchestration and market incentives. Dy-
namic workload orchestration based on real-time water metrics
offers sustainability optimization opportunities. Short-duration jobs
can opportunistically utilize regions experiencing temporary EWIF
spikes without significantly amortizing embodied water footprints,
while long-running applications can target consistently water-
efficient locations. Like carbon, with standardized water footprint
accounting, cloud providers can transparently report water con-
sumption in liters per execution. This enables fair comparisons
and creates market incentives – when developers see their applica-
tions’ true water footprint, they optimize execution time and region
selection for water-conscious execution.

Energy Attribution. Developing more sophisticated models that
explicitly incorporate factors such asmemory bandwidth utilization,
diverse I/O patterns (e.g., read/write throughput and latency), and
accelerator usage (e.g., GPU/TPU offloading efficiency) would sig-
nificantly enhance the accuracy of energy consumption estimates
of our model. However, this remains an active and challenging area
of research, drawing parallels to ongoing advancements in related
fields like carbon accounting for data centers, where standardized
methodologies for attributing emissions across hardware layers are
still evolving to account for dynamic workloads.

Integration of Uncertainty Analysis.Methodologies should in-
corporate uncertainty analysis to reflect variability inherent in each
phase, such as fluctuating water efficiency in manufacturing tools
or climate-dependent operational cooling needs. This approach not
only enhances methodological validity under real-world scenar-
ios but also makes the models more resilient. More importantly,

it transforms static footprint assessments into dynamic and more
actionable frameworks for global sustainability.

Observation

Sustainable datacenter operations require both infrastructure-level
decisions (grid-aware siting, lifecycle planning, hardware hetero-
geneity) and operational strategies (dynamic workload orchestra-
tion, transparent accounting). Standardized water footprint ac-
counting enables market-driven optimization by making water
consumption visible to both providers and customers.

6 Related Works
Due to growing computational demand and resulting water foot-
print increases, water footprint optimization has emerged as a crit-
ical challenge in sustainable datacenter research [20]. Prior work
enables water footprint quantification [31, 43, 48], with Li et al. [31]
estimating operational water use across spatial and temporal di-
mensions – though manufacturing and decommissioning impacts
remain unaddressed. The Water Scarcity Factor (WSF) impacts the
quantification of the water footprint, and several studies provide
diverse methodologies for determining WSF [12, 14, 27, 53]. For
example, SCARF [53] presents a framework that incorporates both
spatial and temporal dimensions to better capture regional water
stress. The field of water footprint research is expanding rapidly,
with recent datasets [20] enabling new optimization opportunities.

To reduce the water footprint of large-scale systems, various
schedulers have been proposed [24, 25] that leverage spatio-temporal
variations inwatermetrics. For example,WaterWise [25] co-optimizes
carbon and water footprints using regional scarcity factors. How-
ever, these optimization efforts assume standardized water account-
ingmethodologies exist. It does not consider decommission for their
modelling, and also does not consider the various possible method-
ological choices. However, the lack of comprehensive accounting
that captures all water sources leads to inconsistent measurements
and can misguide optimization decisions.

7 Conclusion
In this paper, we establish multiple methodologies for quantifying
datacenter application execution’s water footprint. We demonstrate
how different accounting choices yield different measurements for
identical workloads. Our analysis shows that comprehensive ac-
counting should include all four water consumption sources: on-
site operational, off-site operational, manufacturing embodied, and
decommissioning water, with decommissioning being previously
overlooked despite its significant impact. We demonstrate that
methodological choices and spatio-temporal variations in water-
related factors (EWIF, WUE, WSF) significantly impact water foot-
print measurements and optimization opportunities. We hope this
work serves as a step toward the standardization of water footprint
accounting for sustainable datacenter operations.
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