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Abstract—The increasing frequency of documented natural
disasters can be attributed to advances in communication tech-
nologies, such as satellites, the Internet, and smart devices that
facilitate better disaster reporting. This is coupled with an actual
rise in the occurrence of such events and improved documentation
of their impacts. These trends underscore the pressing need
for scalable and intelligent technological solutions to efficiently
process large datasets, allowing informed decision-making and
effective disaster response. This study presents a Computing
Continuum framework that integrates intelligence across cloud,
edge and deep edge tiers for efficient disaster data processing.
A significant characteristic is the incorporation of Artificial
Intelligence for IT Operations (AIOps), which leverages machine
learning and analytics to facilitate dynamic resource management
and adaptive system modeling, thereby addressing the intricate
challenges posed by disaster scenarios. The architecture encom-
passes an Al-driven framework for monitoring and managing
service, network, and infrastructure layers, tailoring policies to
specific disaster needs. The proposed framework is applied to
wildfire management, leveraging an AI Operation Manager to
coordinate sensor-equipped drones for real-time data acquisition
and processing. Operating at the deep edge tier, these drones
transmit environmental data to edge and cloud infrastructures
for analysis. This multi-tiered approach improves situational
awareness, disaster response, and resource utilization.

Index Terms—Natural Disaster Management, Artificial Intel-
ligence, Computing Continuum, Software Architecture, AIOps

I. INTRODUCTION

The frequency and impact of natural disasters have escalated
significantly in recent decades. According to the Institute for
Economics and Peace [1], the number of recorded disasters
increased from 39 in 1960 to 396 in 2019, with peak events
in 2005 resulting in 90,000 fatalities and 160 million people re-
quiring urgent assistance. The economic burden has also risen
sharply, with annual damage costs growing from $50 billion
in the 1980s to $200 billion in the last decade. These trends
highlight the necessity of enhancing natural disaster manage-
ment (NDM) through computational approaches that improve
real-time response efficiency, optimize resource allocation, and

support decision-making under uncertainty. The main issue in
NDM is the inefficiency of traditional computing architectures
in handling real-time, large-scale, and dynamically evolving
disaster scenarios, preventing the timely analysis and dissem-
ination of critical data collected from heterogeneous sources,
essential for interactive decision support systems. Existing
solutions rely on centralized cloud infrastructures, introducing
latency and bandwidth limitations that delay first responders’
access to actionable insights. Additionally, the lack of Data-
driven intelligence across the computing continuum hinders
efficient information sharing and adaptive resource allocation,
while limiting the ability to integrate and visualize extreme
data sources in real time. These shortcomings compromise
situational awareness and reduce the effectiveness of disaster
response operations.

To address these limitations, this paper proposes a novel
software architecture that integrates Al-driven decision-
making across the computing continuum, distributing compu-
tational workloads efficiently. By leveraging deep edge, edge,
and cloud resources, the framework enhances responsiveness
in dynamic and resource-constrained environments, improving
situational awareness and real-time decision support. Further-
more, it facilitates data fusion, visualization, and autonomous
system reconfiguration, enabling first responders and coordi-
nation centers to process and act upon extreme data streams
more effectively. This work presents the conceptual design of a
three-tier hybrid architecture, comprising deep edge, edge, and
cloud layers, along with service, network, and infrastructure
layers orchestrated by an operation manager.

The rest of the paper is organized as follows. Section II
details the motivation for this architectural design. Related
works are discussed in Section III, followed by an overview
of the proposed architecture in Section IV. Although a com-
prehensive implementation and evaluation extend beyond the
scope of this preliminary design paper, Section V provides a
use case illustrating its application in an NDM scenario. This
includes a subsection that elaborates on the microservices,
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delineates a potential implementation scenario, and outlines
key elements for future evaluation in accordance with this
architectural blueprint. Finally, Section VI concludes the paper,
highlighting ongoing efforts and future research direction,
including the potential implementation strategies and rigorous
evaluation of the proposed architecture.

II. MOTIVATION

In the current era of climate change, the NDM is becoming
increasingly important at a global level to address the new
challenges that are appearing in Nature. In fact, first responders
are in urgent need of technological support [2].

End-users are, typically, highlighting a pool of needs, such
as (a) the ability to collect and share vital information, (b) the
lack of an enhanced sharing information tool, (c) the fusion of
many heterogeneous extreme data sources and (d) advanced
and interactive visualization systems, combining data fusion
capabilities for enabling advanced real-time decision support
features. On the other hand, a natural disaster scenario is
typically characterized by energy- and Internet-disconnected
areas, where battery-powered devices (e.g., drones, weather
stations) are used for supporting first responders (e.g., civil
protection, firefighters) during the exploration and rescue mis-
sions. At the same time, a coordination center monitors the
operations from remote, often facing the issue of transmitting
data over a satellite network, which increases the latency and
reduces the possibility to make decisions in real-time. Our
solution meets those requirements, by developing a cloud-
edge intelligence platform. Furthermore, the management of
NDM tasks in the aforementioned scenario is facilitated by
pipelines that handle data in near real-time across various
devices, libraries, and end-user entry points. Balancing local
data collection and aggregation decisions with global op-
timizations that incorporate learning for system operations
necessitates a software architecture that operates both hori-
zontally to distribute data processing across the Computing
Continuum and vertically by utilizing Artificial Intelligence
capabilities for cross-optimizations between the infrastructure
and application services. The following technical requirements
must be integrated to achieve a cohesive vision of NDM:

o Integrating learning for local decisions and global
optimizations for gaining insights and knowledge of
processes while reconfiguring applications under new
events or constraints.

o Support geographically distributed deployment and
device mobility to handle dynamically different sizes of
systems and fragmented applications.

III. STATE OF THE ART

The Internet of Things (IoT) is commonly linked with
utilizing Machine Learning algorithms to analyze data, derive
insights, and predict patterns future occurrences [3]-[5]. The
progressive convergence of cloud computing and IoT devices
is resulting in the computing continuum [6]-[8]. The con-
cept of edge computing first became to represent a middle
layer, where data and computation were migrated in runtime,
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and later was fused with the IoT devices, because these
increasingly acquired computational capacity. In the context
of natural disasters, selected scientific works are available in
literature to leverage the Computing Continuum for natural
disasters. Lgvholt et al. proposed a prototype for utilizing real-
time seismic parameters and HPC in tsunami early warning
and rapid post disaster assessments, faster than the physical
propagation time of a tsunami [9]. Balouek et al. has proposed
a solution for harnessing the computing continuum for urgent
science. An Early Earthquake Warning (EEW) workflow was
used as a driver for proposing a system stack that can enable
the fluid integration of distributed analytics across a dynamic
infrastructure spanning the computing continuum [10]. They
extend this work to introduced a hierarchical approach for
modeling distributed stream-based applications on a large set
of heterogeneous data processing and management frame-
works across the network. [11]. Babu et al. focused on using
IoT home units to design a Flood and earthquake Obser-
vatory System. Results presented encouraging performance,
along with the integration of solar energy for emergency
situations [12]. Balouek et al. discussed research directions
for tackling a fire science scenario that includes sensors at the
edge of the network for smoke detection, and computational
models launched in the cloud for wildfire simulation and air
quality assessment [13].

The proposed software architecture differs from the ones
discussed in this Section because of the exploiting of opera-
tional data. The intent is re-configuring the system in runtime
exploiting Al for operational data by building configuration
according to the monitor of resources and running services.

IV. ARCHITECTURE

In the following, we describe the software architecture
designed to distribute data processing across the Computing
Continuum by leveraging Artificial Intelligence capabilities.
The architecture meets the requirements described in Section
1L

A. Cloud-Edge-Deep Edge Tiers

Figure 1 shows the interactions in the Computing Contin-
uum, composed of two edge tiers and one cloud tier. This
hierarchical structure supports real-time decision-making by
addressing constraints such as latency, connectivity, and energy
efficiency.

o Deep Edge: This tier consists of autonomous and/or
mobile devices responsible for data collection and local
inference of machine learning models. These devices,
though commonly identified as IoT (e.g., Raspberry Pi,
Jetson Nano), possess significant computational capacity.

o Edge Tier: It comprises one or more base stations,
such as portable computers or small-scale data centers,
facilitating real-time data aggregation and intelligent pro-
cessing while communicating with mobile devices (e.g.,
unmanned aerial vehicles) via wireless telemetry.
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Fig. 1. The Cloud-Edge-Deep Edge tiers are thought to distribute the

computation at different distances from the data source. The offloading may
happen by following a horizontal or vertical logic.

‘ Edge Edge ‘

e Cloud Tier: This tier provides remote support and re-
sources for massive computation requirements, ensuring
scalability and resilience.

Computation is handled by distributed computational units
(e.g., agents) deployed across all tiers. By ensuring that
critical processing occurs as close as possible to data sources,
the architecture minimizes delays and enhances situational
awareness. Tasks are executed following a deep edge-to-edge-
to-cloud offloading strategy, prioritizing local execution unless
resource constraints (e.g., battery limitations, network failures)
necessitate offloading to higher tiers.

B. Architecture for Intelligent Intra-Node Management

This subsection details the layered architecture within a
single node, regardless of whether it is deployed at the Deep
Edge, Edge, or Cloud tier. Each node follows a structured
model that includes the following layers:

o Infrastructure Layer: Manages computational resources
such as processing power, memory, and storage.

o Network Layer: Governs communication, connectivity,
and data transmission.

« Service Layer: Executes application logic and and man-
ages workloads based on system demands.

They are all orchestrated by an intelligent cross-layer com-
ponent called the Operation Manager. This design ensures
efficient local resource allocation while enabling coordination
with other nodes in the distributed system, as illustrated in
Figure 2.

Each layer integrates:

« Resource Monitor — Tracks real-time operational data
within the layer, providing essential metrics for perfor-
mance assessment.

« Layer Manager — Implements configuration adjustments
generated by the Operation Manager to refine deployment
strategies.
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Fig. 2. Layered architecture within a single node, composed of Infrastructure,
Network, and Service layers. The Al-driven Operation Manager enables
autonomous optimization and interaction with other nodes across the system.

The intelligent cross-layer component, the Operation Man-
ager, processes operational data from all three layers to opti-
mize configurations, ensure efficient workload management,
and enable dynamic adaptation. This feedback loop allows
for continuous adaptation based on real-time data, ensuring
optimal resource utilization and system resilience. Al-driven
policy learning plays a key role in optimizing configurations.
By analyzing key performance indicators (KPIs) such as
latency, resource availability, and network congestion, the
system dynamically adjusts deployments to match operational
demands. Additionally, computational units within the Edge
and Cloud tiers interact through global Al cross-layers, en-
abling efficient workload distribution across nodes.

C. Operation Manager

The Operation Manager is the core intelligence of the
framework, consisting of multiple Al agents that process time-
series operational data from each layer. By leveraging real-
time analytics and machine learning models, it facilitates
adaptive decision-making for resource allocation, workload
offloading, and system reconfiguration, as illustrated in Figure
3.

Each Al agent is structured into two primary components: a
Predictive Neural Network (Predictive NN) and an Anomaly
Detection Module. The Predictive NN is responsible for
forecasting system behavior based on historical and real-time
data, allowing for proactive adjustments in resource alloca-
tion. Meanwhile, the Anomaly Detection Module continuously
monitors deviations from expected performance, detecting
potential faults or inefficiencies in system operations. These
two components work in tandem, ensuring both predictive
optimization and rapid response to unexpected conditions.
Each AI agent focuses on optimizing a specific subset of
resources (e.g., CPU, memory, network bandwidth, energy
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Fig. 3. The Operation Managers are cross-layers components that interact with each other for evolving the architecture behavior as if it is a complex system.

consumption). The agents collaborate through an ensemble
learning approach, ensuring that system-wide decisions align
with operational priorities.

The Policy Scheduler Manager responsible for synthesiz-
ing Al-generated insights and generating configuration updates
that align with the system’s objectives, operates at two levels:

« Intra-domain Policy Management: Regulates resources

and task allocation within a specific layer (Deep Edge,
Edge, or Cloud), ensuring local optimization of comput-
ing nodes.
Inter-domain  Policy Management: Coordinates
resource-sharing and workload distribution across
different layers, enabling dynamic task offloading and
cross-layer cooperation.

The Operation Manager is not limited to local optimization.
Each node in the system—whether deployed in the Deep Edge,
Edge, or Cloud—can exchange information with the Operation
Managers of other nodes, forming a distributed intelligence
network. This capability allows nodes to collaboratively man-
age workloads, offload tasks dynamically, and balance system-
wide resource utilization, ensuring efficient decision-making
across the entire computing continuum. By leveraging this
intelligent intra-node management architecture, the system
allows real-time adaptability, energy-efficient operation, and
resilient performance, making it particularly suitable for sce-
narios requiring autonomous decision-making in resource-
constrained environments, such as emergency response and
large-scale monitoring applications.

D. AI-Driven Resource Optimization

Al-driven decision-making in resource optimization relies
on key operational data:
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o Service Performance Metrics: Metrics such as latency,
throughput, and availability guide intent-based optimiza-
tion, ensuring user experience enhancements [14]. Instead
of defining resource requirements explicitly, high-level
intents are translated into policies based on continuous
KPI monitoring [15].

Network Performance Metrics: Connectivity parame-
ters like bandwidth, latency, congestion, and packet loss
enable real-time adjustments for efficient data transmis-
sion [16]. Intent-driven orchestration dynamically opti-
mizes routing and congestion control, ensuring alignment
with service-level objectives [17].

Infrastructure Performance Metrics: Insights into
CPU, memory, storage, and energy consumption support
dynamic resource allocation and energy-aware provision-
ing [15]. Proactive fault detection minimizes downtime,
enhancing reliability across cloud and edge infrastruc-
tures [17]-[19].

By correlating these data sources, the Operation Manager
continuously refines decision-making, adapting resource pro-
visioning and workload distribution to changing conditions.
Optimization strategies depend on the specific operational data
considered, particularly in application-specific scenarios such
as natural disaster management.

E. Intent-Based Scheduling

The Policy Scheduler Manager translates high-level op-
erational goals (e.g., minimizing response time, maximizing
energy efficiency) into concrete resource allocation strategies.
This intent-based approach ensures that system adaptations
align with real-time mission objectives.
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o Predictive Analytics: Al models simulate scheduling
scenarios to anticipate bottlenecks and optimize workload
distribution before issues arise.

« Adaptive Security: Dynamic policy adjustments enhance
system resilience against cyber threats and ensure secure
data sharing.

« Continuous Learning: A feedback loop refines schedul-
ing policies over time, integrating insights from both Al
models and real-world operational data.

By integrating Al-driven intelligence at every layer, the
proposed architecture empowers real-time, data-driven deci-
sion support, improving operational efficiency and situational
awareness in complex and dynamic environments.

The operation data are not only used standalone. They are
often considered in combination because the state of a layer
may affect the state of another layer. For example, Service
Operation may be correlated with Network Operation in
terms of latency or bandwidth constraints, optimizing the data
transfer protocol. Network Operation may be correlated with
the Infrastructure Operation to coordinate network resource
provisioning based on service-level demands and infrastruc-
ture constraints. Infrastructure Operation may be correlated
with the Service Operation in terms of provisioning recom-
mendations, planning or container orchestration. Additionally,
Infrastructure Operation may be correlated with the Network
Operation in terms of alignment between network resource
provisioning and infrastructure capacity planning.

By understanding the capabilities and limitations of the
layers, the Operation Manager adapts its decision-making
processes and optimization strategies to ensure alignment with
the available resources, the constraints (e.g., service level
agreement).

The Policy Scheduler Manager is a key component within
the Operation Manager, responsible for optimizing resource
allocation and scheduling across the infrastructure, network,
and service layers. It synthesizes insights from the three
layers—Service, Network, and Infrastructure—by processing
operational data and intent-based directives, coordinating the
actions of multiple Al agents, ensuring that their decisions are
aligned and do not lead to resource contention or inefficiencies
[20].

Using an intent-based approach, the scheduler translates
high-level user goals (e.g., reducing latency, maximizing avail-
ability) into concrete resource allocation strategies [17]. By
integrating real-time operational data, it dynamically adjusts
scaling policies and resource distribution based on factors like
CPU, memory, energy consumption, disk, and network I/O.

The combination of intent-based networking and digital
twin technology supports predictive analysis by simulating
scheduling scenarios, allowing for proactive adjustments that
optimize performance and mitigate bottlenecks [19]. Addi-
tionally, intent-based scheduling applies security policies by
dynamically adjusting network segmentation, reducing attack
surfaces, and minimizing conflicts between cluster and appli-
cation administrators.
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A continuous feedback loop refines the system’s decision-
making, integrating both Al-driven subjective assessments and
objective evaluations from digital twins. This ensures that
scheduling remains adaptive to evolving operational demands
while aligning with user-defined intent policies [17], [19].

V. USE CASE AND DISCUSSION

In the context of NDM, the deployment of an Operation
Manager provides a structured framework for facilitating the
deployment of edge devices, such as drones equipped with
sensors for real-time fire detection and monitoring, in wildfire
management scenarios. In fact, leveraging an Al Operation
Manager can significantly enhance the coordination, data ex-
change and decision-making processes across different layers
of the architecture, enhancing responsiveness in fire detection
and containment efforts.

A. Case Study: Wildfire Management

Wildfires represent a significant global threat, particularly
in regions prone to extreme heat and dry weather conditions.
Early detection and real-time monitoring are essential to
mitigate damage, protect human life, and allocate firefighting
resources effectively. Authorities typically deploy a network
of drones equipped with advanced sensors to provide first-
responding support in detecting and monitoring fire outbreaks.
The proposed framework is well-suited to the challenges
of wildfire management, enabling real-time data acquisition,
processing, and decision-making across multiple layers of
computational infrastructure.

Drones operate as deep-edge devices, collecting data from
their surroundings and transmitting them to edge and cloud in-
frastructure for analysis and decision-making. Computational
resources are deployed both on the edge for first-response ac-
tions and in the cloud for management and information fusion
with, e.g., social network posts and satellite images. Table
I summarizes the hardware components deployed across the
Deep Edge, Edge, and Cloud tiers in this wildfire management
scenario.

TABLE 1
HARDWARE COMPONENTS BY COMPUTATIONAL TIER
Tier Device Type Purpose
Deep Edge UAV Drones Image acquisition, environmental
sensing
Ground Sensors Temperature,  humidity,  wind
speed/direction
Edge Base Station (laptop) Fire detection, smoke segmentation
Raspberry Pi rack Fire detection, sensor statistics
Cloud Data Center VMs Fire simulation, information fu-
sion, decision support

B. Microservice-Based Modular Approach

To ensure flexibility and efficient resource allocation in
the proposed framework, a modular microservice-based ap-
proach is adopted. Each computational process, spanning from
deep-edge devices to cloud infrastructure, is structured as an
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independent service that communicates through standardized
interfaces.

This modularization enables dynamic workload distribution
and efficient orchestration of tasks, ensuring real-time respon-
siveness. Each task is isolated and can be scaled independently
depending on demand: for example, if a particular wildfire
incident escalates, additional containers running fire detection
microservices can be instantiated in the edge or cloud tier to
handle the increased workload. The core services include:

« Data Acquisition Services: Responsible for collecting
data from drones, ground sensors, and satellites. These
services preprocess raw data at the deep edge before
transmitting it to higher layers.

« Fire and Smoke Detection Services: Deployed on both
edge and cloud tiers, these services analyze sensor and
image data to identify potential fire outbreaks.

o Decision Support Services: Hosted in the cloud, these
services integrate multiple data sources, including social
network reports and environmental simulations, to pro-
vide actionable insights for disaster management author-
ities.

o Communication and Coordination Services: Facilitate
interaction between different layers, ensuring synchro-
nization and secure data exchange across the infrastruc-
ture.

Table II outlines the primary microservices deployed in each

tier, along with their respective functionalities.

TABLE I
MICROSERVICES AND THEIR MAPPING TO COMPUTATIONAL TIERS

Microservice Deep Edge | Edge | Cloud

Drone-based Image Acquisition v

Drone-based Data Acquisition v

Ground Sensor Data Acquisition v

Fire Detection

Smoke Detection

Person Detection

Car Detection

Fire Segmentation

Smoke Segmentation

Person Re-identification

Sensor Statistics

SNENENENENENENENEN

Drone Planning v

NENENENENENENENENEN

Visualizer (Edge)

Fire Simulation

Information Fusion

Satellite-based Fire Detection

Decision Support
Visualizer (Cloud)

ANENENENEN

C. Multi-Tier Al-Driven Coordination for Wildfire Response

1) Deep Edge Tier: Devices and Services: The Deep Edge
tier consists of Unmanned Aerial Vehicles (UAVs) and ground
sensor networks responsible for real-time data acquisition and
initial processing.
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o Devices: UAVs, equipped with cameras and Al kits (e.g.,
Raspberry Pi, Jetson Nano Orin), capture images and
videos. Ground sensors monitor temperature, humidity,
wind speed, and wind direction, detecting anomalies such
as sudden temperature spikes or wind pattern changes.

o Services: Despite their limited computational power,
Deep Edge devices perform low-level Al-based infer-
ence and execute microservices for early smoke and fire
detection. When necessary, they offload computationally
demanding tasks to Edge base stations.

2) Edge Tier: Devices and Services: The Edge tier acts
as an intermediary layer for real-time data processing and
decision-making.

o Devices: Edge base stations receive images from UAVs
and run fire and smoke detection algorithms. These
stations may consist of laptops, NVIDIA Jetson Orin
devices, or small ARM/Intel-based clusters.

e Services: This tier performs fire segmentation, sensor
data aggregation, and UAV mission planning. If local
processing is insufficient, tasks are offloaded to the Cloud
or horizontally distributed among other Edge nodes.

3) Cloud Tier: Devices and Services: The Cloud tier pro-
vides high-performance computing for advanced analytics and
decision support.

e Devices: Cloud data centers house GPU-accelerated vir-

tual machines (VMs) for intensive computations.

o Services: Tasks include fire spread simulations, multi-
source data fusion (satellite imagery, UAV footage, sensor
data), and decision support for authorities. The Cloud also
serves as a repository for long-term storage and Al model
training.

D. Role of the Layers

o Infrastructure Layer: Evaluates energy-performance
trade-offs for UAVs and other resource-constrained
devices, adapting deployment strategies based on
environmental conditions.

e Network Layer: Manages communication between Edge
and Cloud components, ensuring efficient bandwidth al-
location and minimizing latency.

o Service Layer: Hosts applications for fire detection, mon-
itoring, and emergency response, leveraging insights from
the Infrastructure and Network layers.

When talking about the Infrastructure Layer, it must fit, e.g.,
the trade-off between energy consumption and performance to
maximize the effectiveness of the deployed drones. Therefore,
it evaluates factors such as energy availability and response
time requirements to, e.g., optimize and scale drone deploy-
ment. That is, the evolution of the system is based, e.g., on
environmental conditions and operational demand to ensure
optimal allocation and scalability [21].

E. Intelligent Task Offloading

To maintain system efficiency, Al-driven predictive models
(e.g., LSTM networks) monitor and forecast CPU usage,
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memory consumption, and network bandwidth. These models
are updated in real-time to account for changing environmental
conditions and workloads. The Al system uses this information
to decide when to offload tasks to other tiers, ensuring that
devices in the deep edge and edge tiers do not become
overburdened by high computational loads. For instance, if
the Network Monitor reports high latency or low bandwidth,
the Operation Manager might offload tasks to a local edge
base station rather than the cloud. Similarly, if Infrastructure
Monitor detects low battery levels in a UAV, the Operation
Manager may reduce the frequency of data transmissions
or offload more processing to the edge or cloud tiers. The
integration of predictive Al models with real-time resource
monitoring ensures that the system operates efficiently, even
in highly dynamic and resource-constrained environments such
as wildfire management.

FE. Achievements

The proposal of such architecture holds promise in im-
proving coordination among the various stakeholders involved
in disaster response and mitigation. The integration of edge
devices, such as drones, with sensors and a cloud-edge in-
telligence platform is envisioned to enable real-time data
collection, transmission and analysis, potentially facilitating
timely decision-making during emergencies. Furthermore, the
conceptualization of resource allocation strategies aims to
optimize performance while considering energy constraints,
potentially enhancing the effectiveness of deployed resources.
Addressing critical needs in NDM, such as efficient informa-
tion sharing and interactive visualization for decision support,
underscores the potential progress that could be made to
improve the overall response capabilities.

G. Challenges

Despite the strengths of our proposed architecture, several
challenges must be addressed to ensure effective deployment
and long-term performance. Key challenges include:

o AI Agent Coordination and Synchronization: Coordi-
nating multiple Al agents across Deep Edge, Edge, and
Cloud layers introduces complexity. Each agent may act
autonomously, leading to conflicting resource allocation
strategies. To mitigate this,adopting Multi-Agent Rein-
forcement Learning (MARL) can enable agents to collab-
oratively learn optimal workload distribution strategies,
improving synchronization across layers. Prior research
has shown that MARL techniques can significantly en-
hance multi-agent coordination in complex environments
[22], [23]. Additionally, federated learning could support
decentralized Al model training, enhancing decision-
making capabilities while reducing data transfer overhead
[24].

Real-Time Data Synchronization: Disaster scenarios
are highly dynamic, requiring rapid propagation of data
from sensors to the Cloud. By integrating Prometheus for
real-time metric collection and MQTT for low-latency
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messaging, we aim to minimize delays and improve
synchronization.

« Workload Adaptability in Disaster Scenarios: Disaster
scenarios are highly unpredictable, causing sudden surges
in data volume and computational demands. Efficient
resource management requires rapid adaptation strategies.
Implementing hierarchical orchestration models—where
edge nodes manage immediate processing while cloud
infrastructure handles high-level analytics—has proven
effective in reducing latency during peak loads ( [25]).
Developing predictive scheduling algorithms that antici-
pate resource demands can further improve responsive-
ness.

« Real-World Validation and Adoption: The success-
ful deployment of our framework requires collabora-
tion among Al researchers, emergency responders, and
policymakers. Establishing pilot programs in wildfire-
prone regions can provide practical insights into system
effectiveness. Additionally, incorporating human-in-the-
loop interfaces can improve trust and usability by allow-
ing emergency personnel to interact seamlessly with Al-
driven recommendations. Aligning Al decision-making
with regulatory frameworks and ethical guidelines is
essential for ensuring transparency and accountability.

VI. CONCLUSION

In conclusion, the application of a software architecture
equipped with Al Operational Managers in NDM presents a
promising approach to address critical challenges in disaster
response and mitigation. By leveraging advanced technologies
and intelligent AI Operation managers across different layers,
our proposed solution enhances coordination, efficiency and
adaptability in managing natural disasters.

The deployment of edge devices, such as drones equipped
with sensors, coupled with a cloud-edge intelligence platform,
facilitates real-time data collection, transmission and analysis,
essential for timely decision-making during emergencies. The
integration of adaptive resource allocation strategies ensures
optimal performance while considering the energy constraints
inherent in battery-powered devices.

In addition, our solution addresses key NDM needs, includ-
ing efficient information sharing, data fusion from heteroge-
neous sources and interactive visualization for decision sup-
port. By providing near-real-time data processing capabilities
and enabling cross-layer optimizations, our architecture im-
proves the resilience and effectiveness of disaster management
systems.

As for future work, further exploration could involve the
development of more detailed design specifications using the
Unified Modeling Language (UML), facilitating comprehen-
sive system modeling and refinement. Furthermore, ongoing
research could focus on enhancing the scalability and ro-
bustness of the proposed architecture to handle larger-scale
disaster scenarios and accommodate evolving technological
advancements. Implementing the proposed framework would
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also be a crucial future step in evaluating its effectiveness in
real-world disaster management scenarios.

Overall, our study underscores the importance of adopting
innovative approaches in disaster management, leveraging a
data operational driven Al-based architectures to improve
responsiveness and ultimately mitigate the impact of natural
disasters on communities and infrastructure.
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