SCI Publications
2015
C. Gritton, M. Berzins, R. M. Kirby.
Improving Accuracy In Particle Methods Using Null Spaces and Filters, In Proceedings of the IV International Conference on Particle-Based Methods - Fundamentals and Applications, Barcelona, Spain, Edited by E. Onate and M. Bischoff and D.R.J. Owen and P. Wriggers and T. Zohdi, CIMNE, pp. 202-213. September, 2015.
ISBN: 978-84-944244-7-2
While particle-in-cell type methods, such as MPM, have been very successful in providing solutions to many challenging problems there are some important issues that remain to be resolved with regard to their analysis. One such challenge relates to the difference in dimensionality between the particles and the grid points to which they are mapped. There exists a non-trivial null space of the linear operator that maps particles values onto nodal values. In other words, there are non-zero particle values values that when mapped to the nodes are zero there. Given positive mapping weights such null space values are oscillatory in nature. The null space may be viewed as a more general form of the ringing instability identified by Brackbill for PIC methods. It will be shown that it is possible to remove these null-space values from the solution and so to improve the accuracy of PIC methods, using a matrix SVD approach. The expense of doing this is prohibitive for real problems and so a local method is developed for doing this.
A. V. P. Grosset, M. Prasad, C. Christensen, A. Knoll, C. Hansen.
TOD-Tree: Task-Overlapped Direct send Tree Image Compositing for Hybrid MPI Parallelism, In Eurographics Symposium on Parallel Graphics and Visualization (2015), Edited by C. Dachsbacher, P. Navrátil, 2015.
A. Gunduz, H. Morita, P. J. Rossi, W. L. Allen, R. L. Alterman, H. Bronte-Stewart, C. R. Butson, D. Charles, S. Deckers, C. de Hemptinne, M. DeLong, D. Dougherty, J. Ellrich, K. D. Foote, J. Giordano, W. Goodman, B. D. Greenberg, D. Greene, R. Gross, J. W. Judy, E. Karst, A. Kent, B. Kopell, A. Lang, A. Lozano, C. Lungu, K. E. Lyons, A. Machado, H. Martens, C. McIntyre, H. Min, J. Neimat, J. Ostrem, S. Pannu, F. Ponce, N. Pouratian, D. Reymers, L. Schrock, S. Sheth, L. Shih, S. Stanslaski, G. K. Steinke, P. Stypulkowski, A. I. Tröster, L. Verhagen, H. Walker, M. S. Okun.
Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline, In International Journal of Neuroscience, Vol. 125, No. 7, Taylor & Francis, pp. 475-485. 2015.
DOI: 10.3109/00207454.2014.999268
PubMed ID: 25526555
The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.
A. Gyulassy, A. Knoll, K. C. Lau, Bei Wang, P. T. Bremer, M. E. Papka, L. A. Curtiss, V. Pascucci.
Morse-Smale Analysis of Ion Diffusion for DFT Battery Materials Simulations, In Topology-Based Methods in Visualization (TopoInVis), 2015.
Ab initio molecular dynamics (AIMD) simulations are increasingly useful in modeling, optimizing and synthesizing materials in energy sciences. In solving Schrodinger's equation, they generate the electronic structure of the simulated atoms as a scalar field. However, methods for analyzing these volume data are not yet common in molecular visualization. The Morse-Smale complex is a proven, versatile tool for topological analysis of scalar fields. In this paper, we apply the discrete Morse-Smale complex to analysis of first-principles battery materials simulations. We consider a carbon nanosphere structure used in battery materials research, and employ Morse-Smale decomposition to determine the possible lithium ion diffusion paths within that structure. Our approach is novel in that it uses the wavefunction itself as opposed distance fields, and that we analyze the 1-skeleton of the Morse-Smale complex to reconstruct our diffusion paths. Furthermore, it is the first application where specific motifs in the graph structure of the complete 1-skeleton define features, namely carbon rings with specific valence. We compare our analysis of DFT data with that of a distance field approximation, and discuss implications on larger classical molecular dynamics simulations.
A. Gyulassy, A. Knoll, K. C. Lau, Bei Wang, PT. Bremer, M.l E. Papka, L. A. Curtiss, V. Pascucci.
Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials, In Proceedings IEEE Visualization Conference, 2015.
J. K. Holmen, A. Humphrey, M. Berzins.
Exploring Use of the Reserved Core, In High Performance Parallelism Pearls, Edited by J. Reinders and J. Jeffers, Elsevier, pp. 229-242. 2015.
DOI: 10.1016/b978-0-12-803819-2.00010-0
In this chapter, we illustrate benefits of thinking in terms of thread management techniques when using a centralized scheduler model along with interoperability of MPI and PThreads. This is facilitated through an exploration of thread placement strategies for an algorithm modeling radiative heat transfer with special attention to the 61st core. This algorithm plays a key role within the Uintah Computational Framework (UCF) and current efforts taking place at the University of Utah to model next-generation, large-scale clean coal boilers. In such simulations, this algorithm models the dominant form of heat transfer and consumes a large portion of compute time. Exemplified by a real-world example, this chapter presents our early efforts in porting a key portion of a scalability-centric codebase to the Intel ® Xeon PhiTM coprocessor. Specifically, this chapter presents results from our experiments profiling the native execution of a reverse Monte-Carlo ray tracing-based radiation model on a single coprocessor. These results demonstrate that our fastest run confiurations utilized the 61st core and that performance was not profoundly impacted when explicitly over-subscribing the coprocessor operating system thread. Additionally, this chapter presents a portion of radiation model source code, a MIC-centric UCF cross-compilation example, and less conventional thread management techniques for developers utilizing the PThreads threading model.
A. Humphrey, T. Harman, M. Berzins, P. Smith.
A Scalable Algorithm for Radiative Heat Transfer Using Reverse Monte Carlo Ray Tracing, In High Performance Computing, Lecture Notes in Computer Science, Vol. 9137, Edited by Kunkel, Julian M. and Ludwig, Thomas, Springer International Publishing, pp. 212-230. 2015.
ISBN: 978-3-319-20118-4
DOI: 10.1007/978-3-319-20119-1_16
Keywords: Uintah; Radiation modeling; Parallel; Scalability; Adaptive mesh refinement; Simulation science; Titan
CIBC.
Note: ImageVis3D: An interactive visualization software system for large-scale volume data. Scientific Computing and Imaging Institute (SCI), Download from: http://www.imagevis3d.org, 2015.
C.R. Johnson, K. Potter.
Visualization, In The Princeton Companion to Applied Mathematics, Edited by Nicholas J. Higham, Princeton University Press, pp. 843-846. September, 2015.
ISBN: 9780691150390
H. De Sterck, C.R. Johnson.
Data Science: What Is It and How Is It Taught?, In SIAM News, SIAM, July, 2015.
C.R. Johnson.
Computational Methods and Software for Bioelectric Field Problems, In Biomedical Engineering Handbook, 4, Vol. 1, Ch. 43, Edited by J.D. Bronzino and D.R. Peterson, CRC Press, pp. 1--28. 2015.
Computer modeling and simulation continue to become more important in the field of bioengineering. The reasons for this growing importance are manyfold. First, mathematical modeling has been shown to be a substantial tool for the investigation of complex biophysical phenomena. Second, since the level of complexity one can model parallels the existing hardware configurations, advances in computer architecture have made it feasible to apply the computational paradigm to complex biophysical systems. Hence, while biological complexity continues to outstrip the capabilities of even the largest computational systems, the computational methodology has taken hold in bioengineering and has been used successfully to suggest physiologically and clinically important scenarios and results.
This chapter provides an overview of numerical techniques that can be applied to a class of bioelectric field problems. Bioelectric field problems are found in a wide variety of biomedical applications, which range from single cells, to organs, up to models that incorporate partial to full human structures. We describe some general modeling techniques that will be applicable, in part, to all the aforementioned applications. We focus our study on a class of bioelectric volume conductor problems that arise in electrocardiography (ECG) and electroencephalography (EEG).
We begin by stating the mathematical formulation for a bioelectric volume conductor, continue by describing the model construction process, and follow with sections on numerical solutions and computational considerations. We continue with a section on error analysis coupled with a brief introduction to adaptive methods. We conclude with a section on software.
C.R. Johnson.
Visualization, In Encyclopedia of Applied and Computational Mathematics, Edited by Björn Engquist, Springer, pp. 1537-1546. 2015.
ISBN: 978-3-540-70528-4
DOI: 10.1007/978-3-540-70529-1_368
C. Jones, T. Liu, N.W. Cohan, M. Ellisman, T. Tasdizen.
Efficient semi-automatic 3D segmentation for neuron tracing in electron microscopy images, In Journal of Neuroscience Methods, Vol. 246, Elsevier BV, pp. 13--21. May, 2015.
DOI: 10.1016/j.jneumeth.2015.03.005
Background
In the area of connectomics, there is a significant gap between the time required for data acquisition and dense reconstruction of the neural processes contained in the same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art accuracy so far is insufficient for use without user corrections. If completed naively, this process of correction can be tedious and time consuming.
New method
We present a new semi-automatic method that can be used to perform 3D segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a hierarchical structure for recommended merges of superpixels. The user is then guided through each predicted region to quickly identify errors and establish correct links.
Results
We tested our method on three datasets with both novice and expert users. Accuracy and timing were compared with published automatic, semi-automatic, and manual results.
Comparison with existing methods
Post-automatic correction methods have also been used in Mishchenko et al. (2010) and Haehn et al. (2014). These methods do not provide navigation or suggestions in the manner we present. Other semi-automatic methods require user input prior to the automatic segmentation such as Jeong et al. (2009) and Cardona et al. (2010) and are inherently different than our method.
Conclusion
Using this method on the three datasets, novice users achieved accuracy exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full manual labeling but with a 70% time improvement when compared with other examples in publication.
M. Kim, C.D. Hansen.
Surface Flow Visualization using the Closest Point Embedding, In 2015 IEEE Pacific Visualization Symposium, April, 2015.
Keywords: vector field, flow visualization
M. Kim, C.D. Hansen.
GPU Surface Extraction with the Closest Point Embedding, In Proceedings of IS&T/SPIE Visualization and Data Analysis, 2015, February, 2015.
Keywords: scalar field methods, GPGPU, curvature based, scientific visualization
R.M. Kirby, M. Berzins, J.S. Hesthaven (Editors).
Spectral and High Order Methods for Partial Differential Equations, Subtitled Selected Papers from the ICOSAHOM'14 Conference, June 23-27, 2014, Salt Lake City, UT, USA., In Lecture Notes in Computational Science and Engineering, Springer, 2015.
O. A. von Lilienfeld, R. Ramakrishanan, M., A. Knoll.
Fourier Series of Atomic Radial Distribution Functions: A Molecular Fingerprint for Machine Learning Models of Quantum Chemical Properties, In International Journal of Quantum Chemistry, Wiley Online Library, 2015.
We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation, rotation, and nuclear permutation, and requires no pre-conceived knowledge about chemical bonding, topology, or electronic orbitals. As such it meets many important criteria for a good molecular representation, suggesting its usefulness for machine learning models of molecular properties trained across chemical compound space. To assess the performance of this new descriptor we have trained machine learning models of molecular enthalpies of atomization for training sets with up to 10 k organic molecules, drawn at random from a published set of 134 k organic molecules with an average atomization enthalpy of over 1770 kcal/mol. We validate the descriptor on all remaining molecules of the 134 k set. For a training set of 10k molecules the fingerprint descriptor achieves a mean absolute error of 8.0 kcal/mol, respectively. This is slightly worse than the performance attained using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training and test sets.
S. Liu, D. Maljovec, Bei Wang, P. T. Bremer, V. Pascucci.
Visualizing High-Dimensional Data: Advances in the Past Decade, In State of The Art Report, Eurographics Conference on Visualization (EuroVis), 2015.
S. Liu, Bei Wang, J. J. Thiagarajan, P. T. Bremer, V. Pascucci.
Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections, In Computer Graphics Forum, Vol. 34, No. 3, Wiley-Blackwell, pp. 271--280. June, 2015.
DOI: 10.1111/cgf.12639
CIBC.
Note: map3d: Interactive scientific visualization tool for bioengineering data. Scientific Computing and Imaging Institute (SCI), Download from: http://www.sci.utah.edu/cibc/software.html, 2015.
Page 36 of 144
